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THE STRUCTURAL MECHANICS OF THE 
MYCENAEAN THOLOS TOMB 

I. INTRODUCTION 

THE method of spanning or roofing spaces by means of corbelling has recommended itself 
quite widely to primitive peoples. It has been recognized in a number of prehistoric cultures: 
the megalithic tombs of Copper Age Iberia,' tombs such as Maes Howe, Orkney2 and 
Newgrange, Co. Meath,3 in the British Isles, as well as several tombs in Brittany,4 employ the 
method. The Sacred Wells of the Nuragic Culture in Sardinia were also roofed with corbelled 
domes.5 In these west European examples the gap spanned by corbelling tends to be relatively 
small, two or three metres, and the slope of the corbelling conservative. The point is 
demonstrated clearly by the 'tholos tombs' of Iberia; the greatest distance of their chambers 
is covered by a single slab, and their walls are corbelled out only a relatively short distance.6 
The technique was by no means limited to the illiterate communities of prehistoric Europe. 
Relatively modern examples have been reported from the south of France' and from Italy,8 
where the technique is used for roofing buildings which are not covered by the earthen 
mounds found over the megalithic tombs. The Egyptians of the Old Kingdom used a steep 
and narrow corbelling to roof the passages and chambers of, for example, the Bent Pyramid 
of Sneferu, and the Great Pyramid of Kheops at Giza.9 However the skill and daring of 
the Mycenaean engineers who commonly spanned distances of eight metres, and in the 
largest tombs over fourteen, is unmatched in the history of the technique. Indeed only the 
invention of the true dome enabled larger spaces to be bridged without internal supports.10 
As the Mycenaean tholos tombs illustrate the technique at its most perfect, they pro- 
vide an especially appropriate example from which to examine the principles of corbelled 
structures. 

It is not the intention of this study to examine the whole question of the architectural design 
and construction of tholos tombs. There are many facets of this general question which will 
be referred to only in passing: the nature of the materials used, the building methods applied, 
the structural weak points of the design, the aesthetics of proportion, the typology of the 
tombs, and the history of their development. 

These elements have recently been discussed thoroughly and with elegance by Pelon.x1 The 
point of our research is to stress as a major issue the structural stability of the vault, and how 
it adapts to settlements and other forces. The theoretical approach pioneered by Heyman 
into the equilibrium of shell and similar structures has proved especially valuable in directing 
our investigation. 

1 G. and V. Leisner, Die Megalithgriber der Iberischen 
Halbinsel (i943). 

2 A. S. Henshall, Chambered Tombs of Scotland i (1963) 123ff. 
3 C. O'Kelly, Guide to Newgrange (1967). 
4 G. Daniel, The Prehistoric Chamber Tombs of France (1960) 

80 ff. 
5 M. Guido, Sardinia (1963) 128 ff. and 224 for bibliography. 
6 G. and V. Leisner, op. cit. pl. 85. 
7 Antiquity 52 (1978) 89f. 
8 Antiquity 53 (1979) 152. 
9 C. Aldred, Egypt to the End of the Old Kingdom (1965) ills. 

75, 79; I. E. S. Edwards, The Pyramids (1961). 
10 Larger spans were achieved in timber-roofed buildings 

during the Hellenistic period: the Arsinoeion, Samothrace, see 
J.J. Coulton, Greek Architects at Work (1977) 158-9, The Architec- 
tural Development of the Greek Stoa 295-6; rooms M1 and M, in 
the palace at Vergina, see M. Andronikos Tb AvrK70opo nTr 
Bepyivas and R. A. Tomlinson in 4ApXala MaKebovia i 308-15. 
We are much indebted to Dr. Coulton for drawing our 
attention to this point and for supplying the references. 

11 O. Pelon, Tholoi, tumuli et cerclesfuniraires (1976). 
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II. HISTORY OF RESEARCH 

In the century and a half of serious study that these monuments have inspired various 
solutions have been proposed to the question of how the vault was built stable. Curiously one 
of the earliest descriptions of the Treasury of Atreus has set the pattern for many later accounts. 
Curious because, although it is the finest tomb to have survived, the Treasury of Atreus is far 
from typical of the majority of tholos tombs in the type of masonry used in its construction. 
The section of the tomb (FIG. I) first published by Donaldson in Cockerell's supplement to 
the 'Antiquities of Athens' of I830, is at once the most faithful yet published and the ultimate 
source of all the sections published until Piet de Jong's of 1923.12 
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FIG. I. Section through the Treasury of Atreus (after Donaldson) 

Earlier travellers had appreciated that the dome was corbelled, and not built on the principle 
of the arch;13 but Donaldson, relying on an observation made by Cockerell himself, who had 
cleaned away the earth of the mound to examine the outside of the upper course, remarked 
that 'in its horizontal position at least, the arch was clearly understood by the architect who 
designed these chambers, and was depended upon as the essential principle of construction ... 
Each stone was found to be worked fair and concentric to a depth of three inches from the 
inner face of the dome; the remaining part of the joint was less accurate and often rough, but 
the deficiency was always supplied by small wedge-like stones, driven into the interstices with 
great force ...'14 He illustrates the point with FIG. 2, though it is not clear whether Cockerell 
had cleared the surface of the whole circle of stones or whether part of the plan has been 
surmised. 

The publication of Lolling's excavation of the tomb at Menidi, some fifty years later, marks 
the next progress in considering the problem. The tomb at Menidi is a more typical tholos 

12 BSA 25 (1923-5) pl. 56. 
13 e.g. Wm. Gell, 'Argolis'- The Itinerary of Greece (18Io) 30. 

14 J. Stuart and N. Revett, Antiquities of Athens iv (Suppl.) 
(1830) 30; cf. Leake, Travels in the Morea ii (1830) 377 n. a. 
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tomb, built of rough schist slabs. But although the courses are by no means of the regular 
dressed masonry found in the Treasury of Atreus, much the same principle as that recognized 
by Donaldson was held to apply. From his detailed examination of the tomb Bohn saw that 
although it was not composed of regular courses, the vault was constructed of rings of masonry, 
and that the gap behind the wall was filled with earth stamped down at regular intervals. 

FIG. 2. Plan of the second course of the 
Treasury of Atreus (after Donaldson) 
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FIG. 3. Schematic section through the wall of tholos tomb A at 
Kakovatos (after D6rpfeld) 

The fill behind the wall by its regular thrust towards the interior would, he believed, lend 
the building a greater stability. Understandably Bohn comments that his conclusions were 
limited because he could not examine the structure of the wall's interior.15 The question of 
jointing in cyclopean masonry was considered by Adler in his introduction to Schliemann's 
'Tiryns', but there is no adequate up-to-date treatment.'6 

Dorpfeld, in his article on the tombs of Kakovatos,17 had to make do with buildings in a 
sorry state of preservation, but with the advantage that he could examine their structure 
through the depth of the wall (FIG. 3). 

He observed that the filling behind the wall was not simply the packed earth that Bohn and 
Donaldson had assumed,8s but consisted of a more carefully built wall, a thickness of several 
stones. Even the best preserved of the Kakovatos tombs had suffered in its collapse and its 
wall bulged out of true. All the same D6rpfeld commented on the fact that the layers of stone 
in the section of the wall were not horizontal but sloped at an angle, which at the height of 
I m can be calculated to 50 42', and to 12' 48' at the height of 21 m above the floor.x9 He 
believed that this arrangement was no accident, but that each stone was set in a vertical as 
well as a horizontal ring; that the structure tended towards a true vault. D6rpfeld also stressed 

1" H. Lolling et al., Das Kuppelgrab bei Menidi (i880) 45-7. 
16 H. Schliemann, Tiryns (1886) xi. 
17 AM 33 (1908) 299 esp. 302-3. 
18s Wace states that the blocks of the Treasury of Atreus are 

in fact counterweighted by a heavy mass of rough stones: BSA 
25 (1921-3) 350. 

19 AM 33 (I9o8) 302 n. 3. 
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the importance of the clay found in among the stones, which he believed acted as a primitive 
kind of cement.20 

Although much progress has been made in the study of other features of the tombs and 
their typology since D6rpfeld's account, and although many more have been excavated, 
relatively little attention has been paid to the question of their statics. In the major publication 
of the nine tholos tombs at Mycenae, Wace contributed many insights into the use of materials 
and subtleties of design, but betrayed only a passing interest in the structural stability of the 
tombs.21 His occasional comments indicate that he saw the principles of the cantilever and 
the horizontal arch as the major factors. 
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FIG. 
4- 

Cross-section through tomb III, the tholos tomb at Thorikos (after Gassche and Servais) 

It is symptomatic that the next important review of the problem resulted from the careful 
republication of tomb III by the Belgian Mission at Thorikos. Works of restoration enabled 
Gassche and Servais to examine a cross-section through the tomb in detail (FIG. 4). From 
their many comments on the structure two are of particular interest to our study. Firstly, they 
record that the tomb was built in rings of walling, rather than single courses;22 the technique 
already recognized by Bohn at Menidi. Secondly, they draw attention to the slope of the 
courses,23 which with D6rpfeld they see as a deliberate feature approaching in design the true 
arch. They argue that the slope was intentional, and that the stones on their sloping beds 

might the better respond to the line of thrust, more or less perpendicular to their slope, than 
if they were set horizontally. 

Pelon has discussed the whole problem in his recent work on tholos tombs, and in conclusion 

lays stress on corbelling as the basic principle at work.24 His especially clear definition of the 

operation of corbelling deserves quotation. Each course is cantilevered slightly over the course 

20 Even in modern cemented brick walls the value of the 
mortar is not so much as a bond as in bedding the bricks 
so that all their joints are even: J. E. Gordon, Structures (1978) 
175. 

21 BSA 25 (1921-3) 294, 301. 
22 H. Mussche, Thorikos v 53. 
23 Op. cit. 62. 

24 Pelon, op. cit. 332-6. 
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below. 'I1 vient cependant un moment dans la construction du mur off le centre de gravit6 
se trouve place6 l'exterieur de la surface de sustentation constitu6e par la base de l'assise 
de soubassement et ofu l'ensemble a tendence de basculer vers l'avant. Cet effet d'6croulement 
doit, de toute n6c6ssite, tre compens6 par la constitution a l'arriere des blocs en 
encorbeillement, d'un contrepoids qui d6place le centre de gravitet vers l'arriere.'25 The 
Mycenaean builders avoided using exeptionally long blocks by constructing an interlocking 
wall to achieve the counterweight. 
III. THREE FACTORS CONTRIBUTING TO THE STABILITY OF THE VAULT 

Thus far, then, three main factors have been held to account for the stability of these 
buildings: firstly the use of sloping courses recognized by D6rpfeld and Gassche and Servais, 
secondly the principle of the horizontal ring, first put forward by Cockerell and Donaldson, 
and thirdly the technique of corbelling, as clearly expounded by Pelon. Let us consider these 
factors in turn. D6rpfeld argued that the use of sloping courses was deliberate and that in 
its vertical construction the tholos appoached a true arch.26 In the case of the tholos tomb, 
however, there is no keystone to complete the arch; on the contrary the ogival or bottle-shaped 
profiles of the tomb at Tiryns, and the Tomb of the Genii at Mycenae, indicate an almost 
wilful determination to avoid anything like an arch. Gassche and Servais have also maintained 
that the slope in the courses was an intentional feature of construction, for the reason that 
sloping courses respond better to the line of thrust. But whether its courses are horizontal or 
sloped the resolution of the forces in the vault will be normal, or at right angles, to their 
bedding. It appears to us that the slope of the courses at Kakovatos and Thorikos need not 
be deliberate; it may be due in part to a tendency to place the thicker, heavier end of a 
rough-schist block towards the interior of the stonework, in part to the tendency of the 
courses to tip under a bending moment, in part to settlement after construction and possibly 
also due to the process of collapse. The problem of the effect of sloping courses, whether 
originally planned or due to later settlement, on the stability of the tombs is investigated 
further below. We will start from the assumption that the courses were laid horizontally, but 
our analysis goes on to consider the effect of sloping courses. 

The second principle, that of the horizontal arch coined by Donaldson, is not so simple in 
its application as might at first seem. Donaldson believed that the horizontal arch, or more 
properly ring, was 'the essential principle of construction . . .' and that 'By a succession of 
these cylindrical rings in gradual diminution the artist calculated on their resistance to the 
superincumbent weight of earth purposely heaped on all sides, and relied on their well secured 
concentricity for the durability of the interior form of his bold and novel invention'.27 These 
expressions are not entirely clear. The wedge shape of the voussoirs of the horizontal ring can 
act by responding to any force along the line of the course such as to cause that course to 
slide inwards over its bed. In this way, as Donaldson suggests, a limit will be imposed on the 
degree of distortion to which each ring will be subject. The observation which first led to the 
formulation of the idea was Cockerell's sketch of the second course in the Treasury of Atreus 
(FIG. 2). This, the finest of the tholos tombs, is the culmination of a development in which 
ever greater care was taken to make the courses regular and the joints smooth. Most tholos 
tombs, on the other hand, are built of rough slabs which were not laid in regular courses and 
whose jointing is extremely irregular. If the horizontal ring be invoked for the more normal 
tholos tomb, built of cyclopean or irregular schist walls, it must result not from the careful 

25 Op. cit. 
26 AM 33 (1908) 303 'Bei unserem Kuppelgewolbe ist 

dagegen jeder Stein in verticaler und zugleich auch in hori- 

zontaler Richtung in einem Ring eingespannt' (our emphasis). 
21 Stuart and Revett, op. cit. 30. 
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drafting of blocks laid horizontally in the manner of voussoirs: rather the stones would need 
to jar together, when the structure became compacted, so as to form a tight ring. There is 
no question in the more common type of tholos tomb that wedges were driven in to secure 
the arch in the manner suggested by Donaldson. It may be that the Mycenaean masons 
devised various techniques to ensure that the walls would tighten into a ring. Perhaps they 
took care that the slabs used were wedge-shaped and placed, like a voussoir, with the thick 
end inwards.28 Perhaps they placed vertical slabs between blocks to enable the vertical joints 
to jar more firmly. From observation of the masonry of collapsed tombs we have been unable 
to confirm either of these suggestions. The excavation or cleaning of the upper course of a 
collapsed tomb would throw further light on the matter. 

An objection to the theory that the horizontal ring in itself resists a major thrust lies in the 
fact that for two-thirds of the tomb's height the ring is not closed. The gaps of the stomion 

FIG. 5- Simple corbelling 

and relieving triangle intervene. In this lower part of the 
tombs, where the ring is cut, the lateral pressure must be less 
than the forces of friction which prevent the stones of the jambs 
of the stomion and the sides of the relieving triangle from being 
dislodged. In the upper third, where the vault's wall is most con- 
cave, the horizontal ring may contribute towards the stability of 
the structure. In addition to responding to any forces along 
the line of the courses, the horizontal ring would improve the 
dome's stability by distributing evenly round the structure the 
forces from all directions. Certainly there can be no doubt that 
a horizontal thrust has caused some distortion in the shape of the 
tombs. Its effect is demonstrated by the irregularities of the slope 
of the vault, apparent in the sections of all the tombs. Donald- 

son commented on this very shift, which he illustrated on his section of the Treasury of Atreus 
by a dotted line (FIG. I). If we grant that the surface of the Treasury of Atreus was smoothed 
after construction was finished, then the distortion must have followed some time after the 
tomb was completed. In other words neither the horizontal ring nor friction can have been 
brought rigidly to bear during construction. No doubt the removal of scaffolding, if indeed 
it was used, settlement of the mound, the action of rain, frost, and earth-tremors, will have 
caused the tombs to settle after a period, and change their shape and equilibrium. 

It remains to mention the operation of the third principle: the system of corbelling. For us 
this is the major factor and the basis of our structural analysis. We should define corbelling 
as the method of spanning spaces by jutting out successive courses one over the other in such 
a manner that the total mass of the superincumbent masonry acts at each course within the 
main body of the structure (FIG. 5). Here the courses have equal length, 1 say. It can be shown 
that if the first course (starting from the top) projects beyond the second by -l, the second beyond 
the third by -l, and so on, then the structure will not fall over. The total distance spanned 
by the first n courses is therefore Il+1+jl +... +1/(n+ I) and it can be demonstrated that 

any distance can be spanned, no matter how large, by taking a large enough number of such 
courses. However, it is not a necessary feature of (general) corbelling that the courses are of 
equal length. Indeed, the specific form the corbelling takes in a tholos tomb is discussed in 
detail below. Suffice it to say here that if the course length is allowed to increase from the 

28 The bottom course of the tomb at Vagenas, Englianos, 
is laid according to the opposite principle, that which applies 
more generally in drystone walls, whereby the narrow, pointed 

end is placed away from the surface: C. W. Blegen, Palace of 
Nestor iii (1973) fig- 327- 
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FIG. 6. Section through the tholos tomb A at Dimini 

top down, then a greater distance can be spanned by fewer courses of equal thickness and a 
similar result holds if the whole structure is covered by earth. 

IV. STRUCTURE OF THE VAULT 

Such is the current state of research. It is our intention to examine the forces at play by using 
two complementary techniques: carefully measured plans and mathematical analysis. In 
the first case a number of tholos tombs standing complete to the capstone, or nearly so, have 
been carefully surveyed, and their internal sections drawn at scales varying from I :20 to I : 30 
(FIGs. 6 to 9).29 

For the Treasury of Atreus, which we had not the resources to measure, we rely on the 
section published by Donaldson (FIG. I). The tombs chosen cover a wide range geographically, 
chronologically, and in building styles. In the calculations we have used measurements taken 

29 The survey used direct measurement by tapes. Two guide 
tapes were placed equidistant and at the same level either side 
of the diameter, so as to ensure that a true vertical section 
was measured. A third tape, whose height and position in 
relation to the others was known, enabled each point on the 

section to be calculated. In the cases of the Tomb of the Genii, 
Marathon, and Karditsa the measurements were cross-checked 
by plumb line and found to be correct and accurate within 
the limitations of the scale. W.G.C. owes much useful advice 
to Dr. J. Coulton, who discussed the problem with him. 
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FIG. 7. Section through the tholos tomb at Karditsa 

from the drawn sections. The accurate record of the curvature of the vault in these tombs 
provides both a known for the mathematical analysis and a test of the solution. We are still 
faced with a number of uncertainties. Whilst on the one hand the complete tholos tombs 
enable us to record the slope of the dome at each course, on the other they suffer from the 

disadvantage, from the point of view of our analysis, that the composition of the wall and of 
the mound behind the wall, is unknown. The only way to obtain certain information on these 
details of the structure is by excavation of a partly collapsed tomb which has not otherwise 
been too much disturbed. Certain assumptions are, therefore, made as to the construction of 
the vault. We believe that these assumptions are in themselves reasonable, and they are 

supported by the evidence of tholos tombs which have collapsed and thereby revealed similar 
structural details. 

The lowest section of the vault was built within a cylinder excavated out of the bedrock; 
the thickness of the lower part of the masonry is thus limited by the radius of the cylinder 
(FIG. 3). There is evidence to suggest that the thickness of the stonework at its base stood to 
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FIG. 8. Section through the tholos tomb at Marathon 

the radius of the tomb at a ratio of very approximately I :6.30 Our first assumption is that 
some such formula applies in the case of the complete tombs. This assumption does not much 
affect the calculations for the more critical upper part of the chamber, what we term the dome. 
Once the vault reached a height above the rim of the cylinder of bedrock its thickness was 
no longer so limited. Evidence can be cited from two observations to support our second 
assumption that the masonry was built thicker at the top of the cylinder than within the 

30 Pelon, op. cit. 346 f gives a more circumstantial account; the ratio varies greatly from tomb to tomb. 
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FIG. 9. Section through the Tomb of the Genii, at Mycenae 

cylinder itself. Firstly, in the circular tomb at Thorikos precisely such a thickening has been 
observed (FIG. 4). Secondly, the curvature of the vault always becomes less concave in the 
lower half of a tholos tomb. One reason for this relatively conservative slope is that it lends 
the structure greater stability precisely at its weakest point, at the entrance. A further reason 
is that the greater incline in the upper part of the vault or the dome requires a greater thickness 
of stone to counterbalance the moments at this point than would be possible were its thickness 
limited by the cylinder of bedrock. There is presumably an economy of labour if the steeper 
upper section of the vault is sprung from the top of the bedrock: only earth need be shifted, 
there is no need to quarry away rock. Our third main assumption is that having reached its 
thickest at the rim of the bedrock the masonry becomes regularly thinner as it nears the 
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cap-stone, to give a crescent-like section. Again this assumption is supported by the findings 
at Thorikos (FIG. 4). On these assumptions we have drawn the section of an ideal tholos tomb 
(FIG. 10); our structural analysis is based on this form for a dome. 

V. SIMPLE PLASTIC THEORY AND MASONRY BUILDINGS 

The application of plastic theory to masonry structures has been studied extensively by 
Heyman in a series of articles31 and most recently in a monograph.32 Plastic theory was 
originally developed for steel frames, but Heyman has observed that it is equally valid for 
masonry structures under the following conditions: 

(i) Stone has no tensile strength. This is a reasonable and safe assumption for us to make since 
we are dealing with buildings constructed in dry masonry, or at most with a weak mortar. 
Thus no tensile forces can be transmitted within the bulk of the structure. 

(ii) Stone has an infinite compressible strength. Here we assert that the stone will not be crushed 
by the forces within the building. This supposition seems reasonable and will not lead to serious 
error in the analysis. 

(iii) Sliding cannot occur. It is assumed that there is friction between the blocks of stone and 
that these are effectively locked together in various ways, so that they cannot slide one over 
another.33 In all probability this supposition is the most vulnerable in the problem at hand. 
Consequently, later on in the analysis, when the case of sloping courses is considered, we will 
make some calculations to see if and when friction alone can stop the outward sliding of one 
course over another. Initially, however, this assumption can be safely made, since the analysis 
will start with the case of a tomb built in horizontal courses where all the forces are vertical. 

(iv) The mass of the structure remains substantially the same. In the special case of the tholos 
tombs an earthen mound is an essential feature of the structure; erosion of the mound might 
in some cases have led to the collapse of the tombs. 

In the analysis we will ensure that at all points the line of thrust is in equilibrium with the 
forces acting on the tomb, initially just the self-weight including that of the earthen mound, 
and lies entirely within the masonry structure. The safe theorem34 of plastic theory states that 
if these two conditions are satisfied, then the structure is stable. Needless to say this stability 
refers only to small deflections such as are brought about by small settlements; it does not 
and cannot take account of large ones, which would significantly alter the geometry of the 
building. What the safe theorem does assert is that if the building is stable before a small 
deflection, then it will remain stable afterwards even though the line of thrust may have 
changed significantly as a result. The point is that if the line of thrust lies within the masonry 
before such a movement then it remains within afterwards. This tenet applies even if the line 
of thrust runs along the masonry's surface, that is the interior surface of the tomb; for tensile 
forces would be required to move the line of thrust out. What happens in the case of minor 
deflections is that the dome's shape will undergo small changes and thereby keep the line of 
thrust within the stonework. In terms of the tholos tombs this means that the stone courses 
would change their angle of inclination with respect to the horizontal. 

The safe theorem carries with it an important implication. It allows that the line of thrust 
considered need not be the actual line; so long as there exists one line at equilibrium within 

31 J. Heyman: for example, 'The Stone Skeleton', Inst. J. 
Solids Structures 2 (1966) 249, 'The Safety of Masonry Arches', 
Int. J. mech. Sci. ii (1969) 363 and 'The Strengthening of the 
West Tower of Ely Cathedral', Proc. Instn. Civ. Engrs, pt. I 60 

(1976) 123. 
32 j. Heyman, Equilibrium of Shell Structures (1977). 
33 See our discussion above. 
34 J. Heyman (1969) 635. 
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the masonry this ensures that the building will not collapse. The discovery of the actual line 
in a particular standing tomb will, in general, be impossible because of the large number of 
unknowns, such as the settlements and resulting deflections. In practice the theorem means 
that if a tomb is completed by the builders and remains up for a generation, then that is a 
fair guarantee that, acts of God and man excepted, it will stand up to the present day!35 

VI. SIMPLIFICATIONS FOR THE PURPOSES OF ANALYSIS 

(i) The funnel and capstone at the top of the tomb are ignored, as are the door and the 
opening of the relieving triangle (FIG. Io). The lower part of the tomb is assumed to lie within 
a rock cylinder carved out of the bedrock. Only that part of the tomb which we refer to as 
the dome, that is to say the upper part of the chamber where the slope of the vault is most 
concave, is considered. We have taken the dome to be that part of the vault which extends 
from the top down to the lintel above the door of the tomb; exact locations of these are 
indicated in the tables of measurements (TABLES 4 to 7). 

(ii) The stone courses are assumed to be horizontal. Each course is taken to have a vertical 
thickness A cm which is small compared to the overall size of the tomb. In the tombs studied 
here A varies from about 3 cm in some to about 25 cm in others, and heights of the tomb from 
about 8 m to 13.5 m. It is convenient to term any stone course together with the earth of 
thickness A projecting immediately behind it, a level (FIG. Io). At a later stage we shall consider 
the situation where the courses are moved from the horizontal by subsidence or some other effect. 

(iii) The surface of the earthen mound covering the tomb is taken to be horizontal. Some 
ground surfaces slope on some sides but on the whole this supposition is not a serious distortion. 
The earth above the top of the capstone is taken to be of thickness A also. This level is then 
called the oth level; the kth courses are numbered consecutively o, I, 2,... from the top of the 
vault (FIG. Io). the kth course is then at a depth Ak from the top of the capstone. In practise 
the thickness of the earth level above the top of the tomb varies both around the circle and 
from tomb to tomb. We shall show in the course of the analysis below, that within reason 
this variation is not too important (see Appendix). 

(iv) The stone and earth are assumed to have uniform densities. As the analysis progresses 
these densities will be taken to be identical.36 

(v) As the lines of the courses descend from the top down to the nth course (a depth of 
An) and the radius F(An)of the tomb's inner surface increases, we assume that the horizontal 
depth l(An) of the stone in the nth course gets proportionally greater (FIG. Io). Expressed in 
symbols this means that l(An) = PF(An) where P is a positive constant (i.e. the same for 
all n). The closing remarks of section IV considered the archaeological background to this point. 
The elevation of the tomb at Thorikos (FIG. 4) suggests that a value for P of 4 to I is not 
unreasonable. 

(vi) The following is a more technical assumption. In our analysis we begin by cutting the 
dome vertically into elemental wedges (FIG. IO). In such a wedge we consider the total weight 
of earth and stone acting down on the nth course. Its line of action has, for stability, to lie 
within the stone course; that is at a certain distance from its inner edge.We write this distance 
as a product 8(An)l(An). (In the appendix we deduce as a result of our assumptions that 
8(An) = 8 is a constant independent of n). It is to be noted that in an analysis which took no 
account of plastic theory, we should normally demand that the line of action of the total 

36 J. Heyman, op. cit. 36 Experiments carried out by W.G.C. suggest that this is reasonable. 
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FIG. Io. Section through an 'ideal' tholos tomb, showing the symbols used in the calculations 

weight W(n) (FIG. IO) lie within approximately the middle third of the course (otherwise 
expressed that ~> 8 > 1), the so-called 'Law of the Middle Third'.37 

Any or all of these assumptions could be relaxed and yet an analysis still carried out. 
However, what we are attempting here is a presentation both simple and reasonable enough 
to interpret all our data. And the results achieved are in good agreement with what we predict. 
Analyses tailor-made to each tholos tomb could be carried out, but only at the expense of 
simplicity and an over-all view. And the attempt would be justified only if we knew a good 
deal more about the actual state of the masonry than can be claimed at present. 

To summarize: we have two constants 8 and P. The structure will be safe so long as 8 > o; 
31 W. Morgan and 0. T. Williams, Structural Mechanics (1963), p. 373 gives a simple statement of the principle; cf. 

Heyman (1969) 365 for a comment. 
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FIG. I I. The line of the inner surface of the vault and the same in graphical form 

Pt is unknown but of the order j to I, say. We shall deduce from an analysis of the structural 
mechanics of the tombs a class of equations which describes the shapes of the inside surfaces 
of the tombs. It will be seen that the curve derived is in very good agreement with those of 
five tombs measured. It is to be noted that the line of thrust is decided solely with reference 
to the self-weight of the structure; there is no appeal to the ring principle, and for that reason 
the gaps of relieving triangle and stomion present no difficulty. The least value of P for which 
this class of equation is possible can be determined by taking 8 = o, i.e., when the line of force 
runs down the inner surface of the tomb. 

We demonstrate that there is a perfectly simple method of construction to effect the shape 
deduced. 

After this initial analysis we turn to consider what happens if the courses are no longer 
horizontal. Such tilting could occur, for example, after construction if settlement took place 
below the bottom course of the dome, or at the springing of the dome (FIG. Io). In this case 
the dome acts in a fully three-dimensional manner, and we have to check that the forces 
which come into play are not so strong as to cause slipping of one course over another.38 

Detailed calculations are recorded in the appendices; only the final result and graphical 
analyses are shown in the main body of the text. 

VII. THE SHAPE OF THE INNER SURFACE OF A THOLOS TOMB 

It is convenient in the final stages of the analysis to replace the discontinuous measurement 
An of the depth of the nth course below the top by a continuous measurement x. At the same 
time F(An) is replaced by F(x). This is illustrated in FIG. I I both as in the tomb itself and in 
a graphical form. 

The curves in graphical form of the inner surfaces of the domes of the five tholos tombs, 

38 We are grateful to Professor Heyman for pointing out this aspect of the problem to us. 
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FIG. 12. Plots of the curves of the inner surfaces of the domes of the five tombs 
(the measurements are taken from tables 4-8) 

i.e. the Treasury of Atreus, the Tomb of the Genii at Mycenae, tomb A at Dimini, and the 
tombs at Marathon and Karditsa are plotted together in FIG. 12. 

That for the Treasury of Atreus is of the east side while the remaining four are averages 
of opposite sides. 

It is predicted in the Appendix that, provided certain conditions are fulfilled all the equations 
will have the form: 

F(x) = cxd 
where the constants c and d are to be determined for each tomb. Such an equation can be 
made into a linear equation by taking logarithms on each side to obtain: 

log F = dlog x +log c. 

Thus we predict that if the curves of the internal surfaces of the domes (i.e. down to the 
lintels) of the tholoi in Fig. I2 are replotted on log-log graph paper, then they will become 
five straight lines. These plots are shown on FIGS. 13 to 17, and it can be seen that they are 
all straight lines to a very acceptable level of accuracy. (The straight lines are best least-squares 
estimates. In all cases the correlation coefficients are greater than 0-994. In some a 'tailing-off' 
by points from the straight lines can be seen. These points correspond to courses at the bottom 
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FIG. 13. Plot on log-log scales of the curve of the inner surface of the tholos tomb at Dimini (average) 
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FIG. 14. Plot on log-log scales of the curve of the inner surface of the tholos tomb at Karditsa (average) 
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FIG. 15. Plot on log-log scales of the curve of the inner surface of the tholos tomb at Marathon (average) 
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FIG. 16. Plot on log-log scales of the curve of the inner surface of the tholos tomb of the Treasury of Atreus at Mycenae 

(east side) 
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FIG. 17. Plot on log-log scales of the curve of the inner surface of the Tomb of the Genii at Mycenae (average) 

of the dome, i.e., close to the join of the dome and the bottom half of the tholos. As we 
remarked in section IV, the slope in the bottom half is less acute than in the dome). 

The values of the exponent d in y = czY are given by the slopes of the straight lines in the 
log-log graphs. The five values obtained by least-squares method in the five cases are to the 
nearest o-oi: 

TABLE I. Values of dfor the five tombs 
Treasury of Atreus d = 0-69 
Dimini Tomb A d = 0-67 
Tomb of the Genii d = 0-7 
Karditsa d = o067 
Marathon d = 0o67 

Such a high level of agreement is encouraging, and demonstrates that the shapes of all these 
tombs are essentially the same. Indeed, we show in the Appendix that the data is consistent 
with taking a common value for d for all the tholoi; we will not be too much in error if we take 
this common value to be 3. 

The value of d is absolute in the sense that it is independent of the units of measurement 
used; the constant c, on the other hand, is determined by these units. In addition its value 
depends on the absolute size of each tomb. 

The five values of c measured in metres are: 

Treasury of Atreus c = 2-7 
Dimini Tomb A c = 2. 
Tomb of the Genii c = 2.0 
Karditsa c = 19 
Marathon c = 1-.9 
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The last four values for c are approximately equal, about 2, since these four tholos tombs are 
about the same size; while the Treasury of Atreus is almost twice as big in linear measurements 
and has a correspondingly large value of c. 

We conclude that to a first approximation our predicted equation for the shape of the dome 
is correct and that all have the form 

F(x) = cx 
where c is constant for each tomb. 

Now in order for this equation to be a solution for the shape of the curve of a dome 8(x) 
and P will have to satisfy equation (8) of the Appendix. Since P is constant it is deduced from 
this that 8(x) = 8 is also a constant independent of x. Notice that the equation (8) does not 
involve the constant c. It states a relationship between 8 and P (see FIG. Io for the meaning 
of these constants). For various values of 8 > o the corresponding values of # can be obtained. 
These values are shown in TABLE 2. 

TABLE 2. Table of values of 8 and P for d = - where the structure 
is covered by an earthen mound 

o 0-32 
0-23 0"50 
0-36 0o*75 
"43 I 

Thus if the line of force runs down the inner face of the dome then f = 0-32, that is to say 
that the stone course must have a horizontal depth of about one-third of its inner radius. On 
the other hand, if 8 = 0-36 then P must be 1, much larger (FIG. 18). Evidently the larger P 
the more stone is needed to build the tomb. The collapsed tomb at Thorikos, III (our only 
guide in this matter), has a value of P between 4 and I; so perhaps 8 lay somewhere between 
0-2 and 0-43. 

In fact 8 must in practice be greater than o. For the dome largely rests on a cylinder of. 
stone courses (FIG. Io). Hence for the whole structure to be stable, and not just the dome, 
the line of thrust must be within the masonry right down to the bottom course lying on the 
ground. As a first reasonable estimate this will be ensured if the vertical line of thrust of the 
dome on its bottom course falls within the bottom course of the whole tomb. This is illustrated 
in FIG. 18 where we have assumed that a value of 8 = 0-36 ensures the over-all stability. 

It is of interest to compare this with the case where the vault is built entirely of stone and 
no earthen mound covers the structure. In these circumstances, and again for d = 4, the 
following readings are derived: 

TABLE 3. Table of values of 8 and P for d = I where the structure is not covered by an earthen mound 

S 9 

No value possible 0-5 
o 0-53 

0'21 I 

0-30 "5 
0-34 2'0 
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FIG. i8. The line of thrust in a tholos tomb's wall with P = I and 8 = 0-36 

It can be seen that considerably more stone is needed to effect the same value of S. If I = 
then a stable structure built on the lines suggested is impossible. 

VIII. INCLINATION OF COURSES AND SLIPPING 

We shall now suppose that the courses are inclined (FIG. 19). Even if originally the courses 
were built horizontal they could have become inclined by, for example, settlement of the 
foundations or in some of the courses. Say as in FIG. 19 the kth course, which may be the 
lowest course of the dome, is inclined at an angle 0 to the horizontal. Here we shall consider, 
albeit in a simple manner, whether there is a danger that sliding might take place at this 
level. That is to say, whether the kth course will tend to move horizontally outwards over the 
(k+ I)th course. One of the fundamental assumptions made hitherto was that such sliding 
does not take place. (Of course, the scheme given in FIG. 19 is idealized but it, nevertheless, 
portrays the principle involved.) 

When the courses are inclined the dome of the tomb acts in a fully three-dimensional 
manner. Consistently with the previous line of approach, adjacent wedges can be thought to 
act on each other by means of interlocking stones, friction, and other such forces (FIG. 20). 

Consider the stone course in our wedge. A column of earth Ck acts vertically at its end, and 
there is the course's own weight. Let the resultant of these two be the vertical force Tk (FIG. 

20). It can be resolved into two perpendicular forces: fk acting inwards along the kth course 
and Nk acting normally to it. If no movement takes place within the kth course the force fk 
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Ck 

Hk 

FIG. Ig. Section through a tholos tomb with sloping courses 

FIG. 20. Vertical forces acting on the kth course, horizontal forces from adjacent wedges acting on the kth course 
(ring effect) 

must be opposed by a forcefk which is equal but opposite. This opposing forcefk will be the 
result of friction between adjacent courses and the 'ring effect' as the ring tends to push 
inwards and tightens (FIG. 20). 

The force Nk is then left acting normally to the kth course. In a similar manner we are left 
with the forces N], N2,..., Nk-1 each acting normally to its respective course. On the 
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FIG. 21. A method to give the changing slope of the dome of a tholos during construction 

assumption that all these courses lie at an angle 0 to the horizontal, there will be a force 
N= Nx+N2,+... +Nk-+Nk acting at an angle 0 to the horizontal (k+ I)th course. It is 
assumed, therefore, that settlement has taken place to the (k+ i)th course and that there has 
been a small outward movement at this level, so that a hinge has formed between the kth 
and the (k+ i)th courses at Hk. It follows that the resultant N will act through this point Hk 
(FIG. 19) and that all the compressive forces on the (k+ I)th course act at the inner face of 
the tomb. Elsewhere within the (k+ i) th course compressive forces will be low. In these 
circumstances there is a danger of the kth course sliding over the (k + i)th course if the angle 
0 is close to the angle of friction for drystone on drystone; this is about 25O.39 Hence sliding 
will not be a danger and the structure will remain stable, provided that at all places the angle 
of inclination is markedly less than 250. It is noteworthy that some of the courses in the 
collapsed tomb at Thorikos (FIG. 4) are inclined at an angle approaching this magnitude. 

IX. A SIMPLE METHOD TO CONSTRUCT THE DOME OF A THOLOs TOMB 

The shape F (x) = cxt of the inner surface of the dome can be built in the following simple 
manner (FIG. 21). The builders' problem is to corbel at the correct angle as the courses are 
laid one on top of the other, and as the angle of slope of the interior surface changes from 
course to course. Assume that the over-all height of the tomb has been decided beforehand, 

39 0. W. Eschbach, Handbook for Engineering Fundamentals, 3rd edn. (1975) 480. 
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say approximately equal to the diameter of the tomb. A straight pole (0-0') of the height 
required is raised at the centre of the tomb. Attached to the top of the pole are two ropes. A 
second pole (P-P), greater in length than the diameter of the tomb. is laid crosswise; and a 
mark is made at its centre C. Construction has reached that stage where the dome is to start 
(which we have taken as level with the lintel). The cross-pole is placed across the diameter 
and its centre mark C aligned against the centre pole 0-0'. The radius of the dome at that 
course is marked at R and R'. Two thirds of the distance CR is measured out on the cross-pole 
and marked at T and T': giving CT = CT' = I CR. The strings suspended from 0 are secured 
at T and T' respectively. A line parallel to 0 T gives at R the correct angle of corbelling for 
this level; and similarly to 07T' for the angle at R'. The horizontal pole P-PF is gradually 
turned round the level through I8o0 and the new course built. Earth is packed round the 
outer radius of this newly constructed course to keep the stones from moving. Once this course 
is complete the whole procedure is repeated at the next higher course. If the course thickness 
A is small a few courses could be built at this angle without affecting the accuracy. A 
mathematical demonstration that this method gives the desired shape is given in the Appendix. 
For the builders to apply this method they need only an ability to estimate a proportion of 
I and to build one slope parallel with another. The horizontal thickness of the courses RU 
can also be calculated provided that the proportion P is known since RU = PCR. For P such 
as J, J, or I no problem arises. We are not asserting that this was the method of constructing 
the inner shape of the dome but only that there is at least one method by which it can be 
effected with simple ideas. (This may not have been obvious given the nature of the curve.) 

X. CLOSING REMARKS 

Insofar as we have considered only one aspect of the architecture of the tholos tomb this is 
not the place to review the long-debated and intricate question of the origin of the tomb 
type.40 Nevertheless the particular problem of when and in what circumstances there developed 
the specific technical skill of corbelling across such wide spaces is perhaps germane. The general 
tendency in recent years has been to rule out the possibility that the circular Cretan tombs 
of the Mesara type were vaulted in stone. Our analysis supports this conclusion. In the case 
where the tomb was constructed as suggested but where there is no covering earthen mound 
we have shown, in TABLE 3, that for stability the ratio of the thickness of the wall to the radius 
of the tomb (p) must be at least o-53. Possibly a more realistic figure, and that suggested in 
practice at Thorikos, would be about P = I; that is to say a wall as thick or thicker than the 
radius of the tomb at any given level. We can apply this test by converting into Pelon's indice 
de solidit' (effectively I/P).41 For stability the indice will need to be less than 1.85, which is 
true of only twenty-six of the forty-four cases listed by Pelon; for P = I the indice must show 
less than I, which is true in only one case out of the forty-four. It must be stressed that the 
thickness of the walling at the base of a Cretan circular tomb cannot be compared with the 
thickness at the base of a Mycenaean tholos tomb. As the Cretan tombs are built largely 
above ground the most concave part of their vault, the 'dome' of our analysis, could not spring 
from a ledge of bedrock or from a packed-earth foundation. 

The same conclusion can be reached by another route. Let us for the moment suppose that 
the Cretan circular tombs were vaulted in stone, in a manner similar to the tholos tombs. 
Now the Cretan tombs contained in most cases a large number of burials, which are good 

40 Again an up-to-date and thorough survey can be found 
in Pelon op. cit. 442 f.; cf. also Hood's important article in 

Antiquity 34 (1960) 166-76. 
41 Pelon, op. cit. 53 and Table I, pp. 474-5- 
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grounds for suggesting that they were in use over a long period of time. Furthermore, if the 
connection between Cretan- and Mycenaean-built tombs is direct, then the Cretan tombs 
must have lasted in a good state into the Mycenaean period. These arguments indicate that 
the Mesara-type tombs were stable stone structures, and that they would certainly have 
satisfied the 'generation law' (see above). This being so the safe law tells us that under 
continued similar conditions the Mesara-type structures should have lasted as well as the 
Mycenaean and Late Minoan tholos tombs (we take into account here the fact that the Cretan 
circular tombs were built largely above ground). Perhaps a measure of the outcome of these 
similar conditions (earth-tremors, etc.) can be gauged from their effects on the Mycenaean 
and Cretan tholos tombs: about eight of a known ninety-nine Mycenaean tombs, and five of 
about eleven Late Minoan ones are still substantially intact. But none of the Cretan tombs 
are anywhere close to being intact if they were domed. Consequently, the 'safe law' allows 
us to conclude that, contrary to our initial assumption, the early Cretan circular tombs were 
not domed in stone. 

If the skill of building corbelled stone domes finds no predecessor on Crete, it is reasonable 
to conclude that the technique was first developed on the mainland of Greece, and specifically 
in response to a demand for monumental family vaults. One of the least-expected results of 
our enquiry has been the discovery that in all five tombs almost identical shapes for the dome 
have been employed. The tombs measured are almost as widely separated in date and in 
space as one could hope to find. Their close similarity, therefore, suggests that the method 
for deciding the curvature of the vault was the same in all cases. This must be so whether the 
curvature was established in the manner we have put forward or by some other method. It 
would seem to follow that all the tombs follow the same tradition and were derived from a 
single origin. Thanks largely to the series of campaigns conducted by the Greek Antiquities 
Service and Archaeological Society it has become ever clearer that the tomb type was first 
developed in the area of the south-west Peloponnese.42 In the present state of publication, 
however, it is impossible to consider these early tombs in detail; some have clearly suffered 
severely from erosion.43 Is it possible, all the same, to speculate further about the genesis of 
the corbelled dome? Hood has, with reason, stressed the early 'minoanization' of the south-west 
Peloponnese,44 and Pelon has observed a strong Minoan influence on the important tombs at 
Peristeria.45 Could it be that although the demand for the tombs was a mainland development 
and the funerary beliefs and customs which the tombs answered were Mycenaean, that 
nevertheless the architects were Minoan craftsmen? The question is almost unanswerable from 
the archaeological evidence. All the same a few arguments can be put forward to the effect 
that tholos tombs would not spring naturally from the Minoan architectural tradition. 

First of all the suggestion that the Minoans did not vault their own tombs until a period 
of strong Mycenaean influence, indeed probable Mycenaean rule on the island, is telling 
though not conclusive.6" Moreover the general tendency of Minoan monumental buildings 
during the New Palace period was to favour sawn ashlar masonry.47 It is noteworthy that 
when the vaulted tomb was first introduced into Crete it was constructed in the squared 
masonry of the Minoan tradition, not the irregular schist or cyclopean style of mainland 
Greece. Ashlar masonry is not found in the earliest Mycenaean tombs but is a development 

42 Ibid. 377f- 
43 Ibid. 3oo and n. i. 
4" Antiquity 34 (196o) 168, 174. 
45 Pelon, op. cit. 449- 
46 The Royal Tomb at Isopata, Archaeologia 52 ii (9go5) 

526-62; the Kephala tholos tomb Pelon, op. cit. 422 f.; Tomb 
I at Isopata, Archaeologia 65 (x913-I4) I-14. All three date 
to LM II. 

47 See J. W. Shaw in Annuario 49 (N.s. 33) (g971) 83 ff.; on 
the Temple Tomb at Knossos see P. of M. iv 2, 967-8. 
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found in the later tombs such as tomb I at Peristeria and in the Tomb of Aegisthus at 
Mycenae.48 It has been maintained that Minoan architects used a standard unit of measure 
in constructing their buildings.49 Our suggested method of building a tholos tomb makes no 
appeal to such a unit. Apart from the circular 
tombs there is little in Minoan architecture which 
might be held to anticipate the Mycenaean build- 
ings. The primitive relieving triangle observed in 
Tomb III at Megaloi Skinoi was an isolated 
experiment5s in a tomb whose construction is said 
to date as early as EM I; there is no evidence of 
a later follow up of this experiment. On the con- 
trary the Minoan answer to the weight of 
masonry over the entrance-way was to thicken the 
lintel at its centre. Clearly the greatest strain 
is applied at the centre of the beam, the point 
furthest from the jambs, and a thickened lintel will 
strengthen the block at precisely that point where 
the bending moment is greatest.51 The Mycenaean 
answer was not, in the tholos tombs, to strengthen 
the lintel, but to prevent the weight from falling on 
the lintel: a totally different approach. A second 
monument which might distantly be felt to antici- 
pate the tholos tomb is the Viaduct at Knossos.52 

VX n 

S(x)l (x)W 
6(x) F(x) 

F(x) 

\A/(x) 
I 

- P F(x) 
FIG. 22. Functions and constants involved in the 

solution (continuum variable) 

The suggestion, and it is no more, that the piers supported corbelled arches is not unreasonable, 
and a date in LM I more probable than any other, yet even granted these points a connection 
with the technique of corbelling a tholos tomb is hopelessly remote. 

In brief we would suggest that the skill in engineering and the boldness of conception which 
inspired these monuments owe nothing to foreign technology. The technique of corbelling 
across such wide spaces was a Mycenaean invention conceived at the very earliest state of 
that civilization. 

W. G. CAVANAGH 
R. R. LAXTON 

APPENDIX 

The assumptions on which this analysis of the structure of the tomb's dome is based have 
already been given. The notation is as in FIG. 0o. The courses are taken to be horizontal and 
the dome is sectioned into wedges. Conditions for the stability of each wedge are established. 
Thus the 'ring-effect' is ignored, and our approach is to be considered conservative. The angle 
which each wedge makes at the centre is taken as 2a (FIG. Io) and is supposed to be so small 
that sin a is approximately a. 

The line of action (FIG. 22) of the total weight W(n) of the topmost (n + i) levels (o, I,..., n) 
on the base of the nth stone course acts at a distance 8(An) 1(An) from its innermost 
circumference, that is the interior surface of the tomb at that level. All the forces considered 

48 It is this Minoan feature of Tomb I at Peristeria which 
carries the Minoan mason's marks: Ergon 1960 154 fig. 168. 

49 J. W. Graham, The Palaces of Crete (1967) 222-9, cf. also 
Shaw in Annuario 49 (N.s. 33) (1971) 74 n. 4. 

5o A. Delt. 22 (1967) chron. 482 and pl. 357. The photograph 

does not reveal the nature of the relieving triangle. 
51 It will be apparent that we cannot go along with 

Branigan's explanation, The Tombs of Mesara 35, that the 
reason for the triangular elevation of the lintel was to disperse 
the pressure. 52 P. of M. ii 93 ff 
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are vertical and so parallel with the vertical plane AA (FIG. I o). The distance of the line of 
action of W(n) from AA is F(An) + 8(An) 1(An). We calculate this distance in terms of the sum 
of the effects of each of the (n + I) segments of the levels k o, I,..., n within the wedge. This 
is effected by summing the first moments about AA of these (n + I) segments and dividing the 
sum by the total weight. The result gives the distance of the centre of gravity of (n + I) levels 
from AA,53 which must equal F(An) +3(An) l(An). 

The segment within the wedge of the kth level, that is to say the stone and earth, supported 
by the nth (stone) course's segment within the wedge is a segment of an inner annulus of 
stone between arcs of radii F(Ak) and F(Ak) +1(Ak), and a segment of an outer annulus 
of earth between the radii F(Ak) +1(Ak) and F(An) +l(An), which is the outer radius of the 
nth course. 

The first moment of this segment about AA is: 

lA w(S) { [F(Ak)+ 1(Ak)]3 - F(A k)3} sin a + 

+ A w(E) { [F(A n) + l(A n)]3 - [F( k) + l(A k)]3} sin a (1) 

and the weight is: 

A w(S) { [F(Ak) + 1(Ak)]2 - F(A k)2} + 

+ A w(E) ( [F(A n)+ l(dn)]2 - [F(A k)+ l(Ak)]2} O. (2) 

Here w(S) and w(E) are weights per unit volume of stone and earth, respectively. Hence the 
distance F(An) + 8(An) 1(An) of the centre of gravity from AA of the first (n+ i) segments of 
levels is, recalling that sin a =- a: 

F(d n) + 6(d n) 1(d n) 

2 w(S) Z{ [F(Ak)+ (Ak)]3- F(Ak)3} +w(E) {[F(An)+l(A n)]3 - [F(Ak)+l(dk)]3}d k=o =o (3) 

3 w(S) Z { [F(A k)+l(A k)]2-F(Ak)2}A +w(E) { [F(An)+l(An)]2 -[F(Ak)+ 1(Ak)]2} k=O k=O 

In order to get a simple analytic solution we assume that: 

(a) 1(dk) = PF(Ak) for all k = o, 1, 2,..., where P is a constant independent of k and 

(b) w(E) = w(S) (see remark in section VI). 
With these simplifications the above equation becomes: 

2 1 [(1 +#)3 _ 1] C F(Ak)3A +(1 + )3nAF(An)3-(1 + )3 F(Ak)3A 
F(An)= -k=o k=o 3 (1+ (n)) [(1+ )2 -1] F(A+k)2 + (1 

++ l)2nF(dn)-(12 -1 F(+k)2 
k=O k=O 

2 1 (1 +fl)3nAlF(An)3- C F(Ak)3A k=o (4) 3 (1 +6(An)l) (1 + fl)2nF(dn)2 - 
Z 

F(Ak)2A k=O 

We now suppose that A, the vertical thickness of each course, is small compared with the 
overall height of the dome and turn Ak into a continuous variable varying from o to x(= An). 

53 Morgan and Williams, op. cit. 
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Then the summations in the above expression may be replaced by integrals and we are left 
with the final equation: 

F(x) =2 1 (1+ f)3xF(x)- 
F(z) dz 

3 (1 + 6(x)l) (1+ #f)2xF(x)2 - xF(z)2 dz 

for the shape of the inner surface of the tomb. 
We shall try solutions of this equation of the form: 

F(x) = cxd, where c and d are constants. 

Then 

F(z)2 dz = c2 2d dz = 
( 2d+1) 

and 

f F(z)3 dz = c z3d 
3dz 
= x3d+ 1 

o o (3d + 1) 

Substituting for F(x) and for these integrals in the equation gives 
C3 

(1 +# )3 c33d+1 _ x3d+ 
1 

d 2 1 (3d + 1) 
3 (1+6 (1 + fl)2 c2 x2d+ 1 2_ x2d+ 1 

(2d + 1) 

(1 + )3 - 
[2 

1 (3d + 1) d (6) 
3 (1 + (x)) 

ccx 
(6) 

(2d + 1) 
Hence F(x) = cxd is a solution of the equation if 

1 (1 + )3 - 
2 1 (3d + 1) 

= 1. (7) 3 (1 +6(x)f#) 1 
(1 + )2 _ (2d + 1) 

Note that this expression is independent of the constant c. It connects P, 8(x), and the 
exponent d. 

It has been found from the measurements (FIGs. 13 to 17 and section VII) that the inner 
radius F(x) of each tomb considered does indeed satisfy an equation of the form F(x) = cxt 
(see below for the statistical analysis). For d = I the last expression becomes: 

2 1 (1 + f)3 - 0-33 
= 1. (8) 3 (1 + 6f ) (1 + f)2 -_043 

The expression connects the constants 1 and 8. Observe that we have written 8(x) = 8, a 
constant, which it must be since 3 is a constant. This equation was used in constructing TABLE 2 
for corresponding values of P and 8. 

By way of contrast we shall consider also the case where no earthen mound covers the 
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tomb. The above argument suitably modified, by taking w(E) = o and dropping assump- 
tion (b), leads to the expression: 

2 1 {(1 + )3 - 1} (2d + 1) 
= 1. (9) 

3 (1+6#) {(1+fl)2-1}(3d+1) 
For d = I this becomes 

14 1 (1 + )3 - 1 
27 (1 ) (1. (10) 27 (1 + 6 f) (1 + l)2 - 1 

Y 

F(x) 
2/3F(x) 

Y 
X 

FIG. 23. Method of determining the slope of the inner surface of a tholos tomb at any given point 

This equation was used in constructing TABLE 3 for corresponding values of P and S. 
Finally in support of the suggested method of building (section IX) by which the slope of 

the vault might have been achieved we can argue that if F(x) = cxd, then on differentiating 
F'(x) = dcxd-1 = dF(x)/x. Thus the slope of the curve at distance x below the top of the tomb 
is parallel to dF(x)/ Ix. For d = this gives an easy method for estimating the slope of the 
corbelling at any given depth x below the required height of the tomb. 

Assumption (iii) of our simplification for the purposes of analysis (section VI) was that the 
earth covered the tomb to a depth A. In practice this depth varies from tomb to tomb. 
However, say that the earth has a depth equal to mA (i.e. m thicknesses of A) above a tomb. 
Then equation (7) will be replaced by 

1 m 
(1 + fl)_ +I- 2 1 3d+1 x 

=1. (11) 3 (1 + 6(x)1) , 1 m 
2d+ 1 x 

The solutions for this equation will not be significantly different from those for (7) provided 
m is not too large (and in any event, of decreasing significance as x increases). 

Finally we turn to the statistical analysis of fitting curves of the form F = cxd to the data 
from the five tombs. One approach, that adopted in section VII, is to determine the best fit, 
by the least-squares method, of a linear equation of the form log F = c+ dlog x, where c and 
d are constants. In general, c and d will be different for different tombs. However, we wanted 
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to consider the idea that the value of d is the same for allfive tombs. (i.e., d is to be held constant 
from tomb to tomb) with only c allowed to vary from tomb to tomb. Dr. Triggs showed that 
this later model fitted the data very well indeed and that there is an insignificant improvement 
(as measured by the F-statistic) in fitting the data with both c and d varying from tomb to 
tomb. Hence we feel justified in taking a common value of d for all five tombs; the best fitting 
common value turns out to be o-68 (actually, the 95 % confidence interval for d is o-667 to 
0o691). 

An alternative approach is to fit curves of the form F = cxd directly, i.e., without first 
linearizing by taking logarithms. Here the residual sum of squares was minimized (assuming 
a common value of d) at o-65, slightly less than the value obtained by the linear approach. 
(The reason for this slight difference is that the linear approach assumes the errors are 
multiplicative whilst the direct one assumes that they are additive.) 

Not only did we consider that the value of d should be the same for all five tombs, but also 
that its value should be a simple fraction. This, of course, is because we are offering a simple 
method of construction for the tombs. As a consequence of the above remarks, we feel justified 
in taking a common value of I for the exponent d. 
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TABLE 4. Table of readings describing the curve of the vault of the Treasury of Atreus at Mycenae 
The 'dome' is taken from 2-8 to 26-6. Only the east side is used in the analysis; according to Donaldson the west side is distorted. 

Measurements are given in centimetres at a scale of i :25. 

Depth below capstone (1: 25) Radius to east side (i: 25) 

o cm 3.36 cm 

2.8 5o04 
4-2 7-0 
5-6 8-68 
7-0 10-36 
8-4 11-76 
9-8 I3"16 

II.112 1456 
12-6 15-68* 
14-0o I68o 
15*4 17-64 
16-8 18-76 
18.2 I9-6 
19-6 20-44 
21*0 21-28 

22-4 22.I2 
23-8 22-68 
25'2 23'24 
26-6 24-o8t 
28o0 24-64 
29"4 25'2 

* Top of the relieving triangle. t Top of the lintel block. 

TABLE 5. Table of readings describing the curve of the vault of tholos tomb A at Dimini 

The 'dome' is taken from 2-4 to 19-2. The average of the two radii is used in the analysis. Measurements are given in centimetres 
at a scale of i :25. 

Depth below capstone ( : 25) Radii to east and west sides Average 
RE Rw Av 

2-4 cm 3-36 cm 4.56 cm 3.96 cm 
3-6 4-2 5"64 4"92 
4-8 5-16 6-72 5'94 
6-o 5'52 7"44 6-48 
7-2 6-48 8"76 7-62 
8-4 8-16 9-6 8.88 
9-6 9"12 10o8 9-96 

10o8 9"72 11-76 10-74 
I2O o10-56 I2-72 1I-64 
13"2 IvI6 13-2 12.18 
14'4 I1-52 14-28 12-9 
15-6 I1.88 14.76 13*32 
16-8 12-36 15-48 13"92 
18.o I2-96 I5"72 14"34 
19.2 13-2 16-o8 I4"64 



THE STRUCTURAL MECHANICS OF THE MYCENAEAN THOLOS TOMB 139 

TABLE 6. Table of readings describing the curve of the vault of the tholos tomb at Karditsa 
The 'dome' is taken from I to 16. The average of the two radii is used in the analysis. Measurements are given in centimetres 

at a scale of i: 25. 

Depth below capstone (1:25) Radii to north and south sides Average 
RN Rs Av 

I cm 1-I cm 2.3 cm 1-7 cm 
2 2.6 3.7 3"15 
3 3-6 4"7 4V15 
4 4"5 5.5 5-0 
5 5-2 6-2 5.7 
6 6-o 7"o 6-5 
7 6-4 7T5 6"95 
8 7-2 8-o 7-6 
9 7.6 8-5 8-05 

io 8-2 9-g 8-65 
II 9-2 9-6 9"4 
12 9"7 1011 9"9 
13 10-3 10-5 IO-4 
14 o108 11 10-9 
15 Ix-5 11-7 ir-6 
16 12.1 12-4 12.50 

TABLE 7. Table of readings describing the curve of the vault of the tholos tomb at Marathon 
The 'dome' is taken from 4-8 to 19-2. The average of the two radii is used in the analysis. Measurements are in centimetres al 

a scale of I :25. 

Depth below capstone Radii to west and east Average 
Rw RE Av 

1-6 cm 2-08 cm 2.16 cm 2.12 cm 
2-4 2-88 3-2 3o0 Restored 
3-2 3-68 3'92 3-8 
40o 4V16 4-64 4"4 
4-8 4-8 5-36 5-08 
5"6 5-28 6-o 

5.64 
6-4 6-4 6-72 6-56 
7"2 7-28 7-12 7-2 
8-o 7.76 7-68 7"72 
8-8 8-o 8.16 8o08 
9-6 8-4 8-88 8.64 

o10-4 8-64 9-2 8-92 
11'2 9-12 9-84 9-48 
12*0o Ioo8 1o-o8 io.o8 
12-8 Io-64 10-48 10-56 
13-6 11-04 10.96 110 
14"4 I1152 11-44 I1-48 
15"2 11.9 I1-68 11-76 
16"o I"9 12"0 

11"95 
i6-8 12-08 12-24 12.12 

17-6 12"48 12-32 12"4 
18-4 12.72 12-48 I2-6 
I9-2 I2-8 I2-56 12-68 
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TABLE 8. Table of readings describing the curve of the vault of the Tomb of the Genii at Mycenae 
The 'dome' is taken from 2 to 13. The average of the two radii is used in the analysis. Measurements are given in centimetres 

at a scale of I :25. 

Depth below the top Radii to north and south Average 
RN Rs Av 

2 cm 3-5 cm 3-4 cm 3*45 cm 
3 4"4 4"2 4'3 
4 5*4 5"3 5'35 
5 6-3 6.2 6-25 
6 7-2 71I 7*15 
7 8-o 8- 8-05* 
8 8-9 9"o 8-95 
9 9-8 9'9 9-85 

10 Io"-7 1o5 io-6 
11 11*2 11'2 11'2 
I2 11'9 115 117 

13 12-5 12-4 12-45t 

* Top of the relieving triangle. t The lintel block. 
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