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Preface

Wind waves, with periods of a few seconds, and the tides, with periods of
twelve hours or more, are really two examples of the same physical phe-
nomenon. They differ only in the source of their energy. For the shortest-
period waves—periods of, say, one to four seconds—the connection between
the wind and the waves is obvious. On a windless day, the surface of Mission
Bay is dead flat. But if the wind begins to blow, waves appear within a few
minutes and grow steadily in amplitude to a saturation level that depends on
the strength of the wind. When the wind stops blowing, the waves gradually
decay.

For the breakers on Scripps Beach, the connection with the wind is not so
obvious, but these longer-period waves—periods of, typically, ten seconds—
are wind-generated too. Their wind sources are powerful storms that may
have occurred days ago and thousands of miles away. Only the very strong
winds associated with these storms can generate these long, fast-moving
waves. Because their wavelengths are so long, these waves experience very
little dissipation; they lose little of their energy on their long cross-ocean
trip to San Diego. The energy in these long waves travels at a speed that
increases with the wavelength. Because of this, these far-traveling waves sort
themselves by wavelength during the long trip, with the longest waves reach-
ing San Diego first. This sorting explains why the breakers on Scripps Beach
often seem to have a single, well-defined period.

In contrast to the wind waves, the tides receive their energy from the grav-
itational pull of the Sun and Moon. This energy source imposes a scale—a
wavelength—that is comparable to the Earth’s radius and therefore not di-
rectly observable by eye. However, ancient peoples recognized the connection
between astronomy and the tides merely by observing the regular periods of
the tides. Because tidal periods are comparable to, or longer than, a day,
the tides are strongly affected by the Earth’s rotation. Because the spatial
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scale of the tides is so large, the tidal response to astronomical forcing is very
sensitively dependent on the irregular shape of the ocean basins. Until very
recently, this fact, and a misunderstanding of tidal dissipation mechanisms,
defeated attempts at a quantitative physical explanation of the tides.

This course was originally planned to cover both wind waves and tides.
However, it was soon realized that ten weeks is barely to sufficient to cover
either of these topics in any detail. Wind waves were selected as being of
greater general interest.

You can find lots of books about ocean waves. Nearly all of them fall
into one of two categories: popular books full of pictures and sea lore, and
textbooks written for people with a bachelor’s degree in a physical science.
All of the latter assume a prior knowledge of fluid mechanics, or contain a
general introduction to fluid mechanics as part of the book.

In a ten-week course, we cannot afford to learn fluid mechanics before
embarking on waves. Therefore, this textbook, which has been written es-
pecially for the course, avoids the need for a background in fluid mechanics
by basing our study of waves on two fundamental postulates. These two
postulates are:

1. The dispersion relation for ocean waves, which is introduced and ex-
plained in chapter 1.

2. The principle of wave superposition, which is explained and illustrated
in chapters 2 and 3.

Strictly speaking, these two postulates apply only to ocean waves of very
small amplitude. Nevertheless, a great many useful facts may be deduced
from them, as we shall see in chapters 4, 5, 6 and 7. Not until chapter 8
do we justify our two postulates on the basis of first physical principles—the
conservation of mass and momentum by the fluid. Chapter 8 is a whirlwind
introduction to fluid mechanics, but its primary goal is a very limited one: to
justify the two fundamental postulates that will have already proved so use-
ful. Chapters 9 and 10 apply the newly derived equations of fluid mechanics
to tsunamis and to the physics of the surf zone. However, no great expertise
in fluid mechanics is required for this course. In fact, the course is designed
to give you just a taste of that subject, enough to decide if you want to learn
more about it.

However, you do need to know some math: basic differential and inte-
gral calculus, a bit of vector calculus, a good bit about ordinary differential
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equations, and at least a wee bit about partial differential equations. To
determine if your math background is sufficient, have a look at the first few
chapters.
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Chapter 1

Basic waves

To describe ocean waves, we use a right-handed, Cartesian coordinate system
in which the z-axis points upward. The x- and y-axes point in horizontal
directions at right angles. In the state of rest, the ocean surface coincides
with z = 0. When waves are present, the surface is located at z = η(x, y, t),
where t is time. The ocean bottom is flat, and it is located at z = −H, where
H is a constant equal to the depth of the ocean. Refer to figure 1.1.

Our first basic postulate is this:

Postulate #1. If A|k| � 1, then the equation

η = A cos(kx− ωt) (1.1)

describes a single, basic wave moving in the x-direction, where A, k, and ω
are constants; and ω and k are related by

ω =
√
gk tanh(kH). (1.2)

Here, g = 9.8 m sec−2 is the gravity constant, and

tanh(s) =
es − e−s

es + e−s
(1.3)

is the hyperbolic tangent function. This first postulate, summarized by (1.1)
and (1.2), needs some elaboration and a lot of explaining. It will take us a
while to do this. But before saying anything more about Postulate #1, we
go on to state:
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Figure 1.1: Ocean surface elevation in a basic wave.

Postulate #2. Still assuming A|k| � 1, we may add together as many
waves satisfying Postulate #1 as we like; the result will be a physically valid
motion. For example,

η = A1 cos(k1x− ω1t) + A2 cos(k2x− ω2t) (1.4)

is physically valid if the pairs (k1, ω1) and (k2, ω2) each satisfy the requirement
(1.2), that is, if

ω1 =
√
gk1 tanh(k1H) and ω2 =

√
gk2 tanh(k2H) (1.5)

Using only these two postulates, we can explain quite a lot about ocean
waves. Eventually we shall go deeper into the underlying physics, but for
quite some time, these two postulates will suffice. Our immediate task is an
elaboration of Postulate #1.

Equation (1.1) describes a single basic wave with amplitude A, wavenum-
ber k, and frequency ω. The frequency ω is always positive; the wavenumber
k can be positive or negative. If k is positive, then the wave moves to the
right, toward positive x. If k is negative, the wave moves to the left. The
wave height—the vertical distance between the crest and the trough—is equal
to 2A. See figure 1.2.

The wavelength λ is related to the wavenumber k by

λ =
2π

|k|
(1.6)

and the wave period T is related to the frequency ω by

T =
2π

ω
(1.7)
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Figure 1.2: The wave height is twice the wave amplitude A.

The wave described by (1.1) moves in the x-direction at the phase speed

c =
ω

k
(1.8)

which has the same sign as k.
The restriction A|k| � 1 is an important one. It says that the wave height

must be small compared to the wavelength. In other words, the wave must
have a small slope. Only then are (1.1) and (1.2) an accurate description of
a physical wave. The restriction to small amplitude A means that we are
considering what oceanographers call linear waves. (The logic behind this
terminology will be explained later on.) The theory of linear waves cannot
explain such things as wave breaking or the transfer of energy between one
wave and another. Nevertheless, and because nonlinear wave theory is so
much more difficult, this course is largely limited to linear waves.

There is a further restriction on (1.1) and (1.2) which must be explained.
These equations assume that the wave is neither being forced nor dissipated.
That is, (1.1) and especially (1.2) describe a free wave. The equations apply
best to the long ocean swells between the point at which they are generated
by storms and the point at which they dissipate by breaking on a beach.

Equation (1.1) could be considered a general description of almost any
type of wave, depending only on the interpretation of η. It is the dispersion
relation (1.2) that asserts the physics, and tells us that we are considering
a water wave. The dispersion relation is a relation between the frequency ω
and the wavenumber k. Alternatively it can be considered a relation between
the phase speed c and the wavelength λ.

The physical description (1.1-2) is incomplete. To have a complete de-
scription, we must specify how the fluid velocity depends on location and
time. The fluid velocity is a vector field that depends on (x, y, z, t). We
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write it as

v(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) (1.9)

For the wave described by (1.1) and (1.2), the y-component of v vanishes.
That is, v = 0; there is no velocity out of the page. The x- and z-components
are given by

u = Aω
cosh(k(H + z))

sinh(kH)
cos(kx− ωt) (1.10)

and

w = Aω
sinh(k(H + z))

sinh(kH)
sin(kx− ωt) (1.11)

These are somewhat complicated expressions. However, two limiting cases
will claim most of our attention.

From now on, we let the wavenumber k be positive. This means that we
are focusing on waves moving to the right, but the generalization to left-going
waves is obvious. Our first limiting case is the case of deep water waves, in
which kH � 1; the water depth is much greater than a wavelength. In the
limit kH � 1,

tanh(kH) =
ekH − e−kH

ekH + e−kH
→ ekH

ekH
= 1 (1.12)

cosh(k(H + z))

sinh(kH)
=
ek(H+z) + e−k(H+z)

ekH − e−kH
→ ek(H+z)

ekH
= ekz (1.13)

sinh(k(H + z))

sinh(kH)
=
ek(H+z) − e−k(H+z)

ekH − e−kH
→ ek(H+z)

ekH
= ekz (1.14)

Thus the deep-water wave is described by

DW η = A cos(kx− ωt) (1.15a)

DW ω =
√
gk (1.15b)

DW u = Aωekz cos(kx− ωt) (1.15c)

DW w = Aωekz sin(kx− ωt) (1.15d)

The abbreviation DW is a reminder that the equation applies only to deep
water waves.
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Our second limiting case represents the opposite extreme. It is the case
kH � 1 of shallow water waves, in which the depth H is much less than the
wavelength. In the limit kH � 1,

tanh(kH) =
ekH − e−kH

ekH + e−kH
=

(1 + kH + · · · )− (1− kH + · · · )
(1 + kH + · · · ) + (1− kH + · · · )

→ 2kH

2
= kH (1.16)

cosh(k(H + z))

sinh(kH)
=
ek(H+z) + e−k(H+z)

ekH − e−kH

=
(1 + k(H + z) + · · · ) + (1− k(H + z) + · · · )

(1 + kH + · · · )− (1− kH + · · · )

→ 2

2kH
=

1

kH
(1.17)

sinh(k(H + z))

sinh(kH)
=
ek(H+z) − e−k(H+z)

ekH − e−kH

=
(1 + k(H + z) + · · · )− (1− k(H + z) + · · · )

(1 + kH + · · · )− (1− kH + · · · )

→ 2k(H + z)

2kH
= (1 + z/H) (1.18)

Thus the shallow-water wave is described by

SW η = A cos(kx− ωt) (1.19a)

SW ω =
√
gHk (1.19b)

SW u =
Aω

kH
cos(kx− ωt) (1.19c)

SW w = Aω(1 + z/H) sin(kx− ωt) (1.19d)

Swell far out to sea certainly qualifies as DW. According to (1.15b), the
DW phase speed—the speed of the wave crests and troughs—is given by

DW c =
ω

k
=

√
g

k
=

√
gλ

2π
(1.20)
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Figure 1.3: Fluid velocity in a deep-water wave moving to the right.

Hence, waves with longer wavelengths travel faster. The phase speed (1.20)
is independent of the wave amplitude A, and it is much larger than the
fluid velocity (1.15c-d). The latter is proportional to A and is therefore
infinitesimally small in linear theory.

Because of the factor ekz in (1.15c-d), the fluid velocity decays with dis-
tance below the surface (becoming smaller as z becomes more negative).
According to (1.15c), the fluid velocity is in the direction of wave propaga-
tion under the crest, and in the opposite direction under the wave trough.
According to (1.15d), the fluid is rising ahead of the crest, and descending
behind it. See figure 1.3.

In the shallow-water limit (1.19), the horizontal velocity u is independent
of z (figure 1.4). The vertical velocity w varies linearly with z, but it is
smaller than u by a factor kH. The shallow-water phase speed c =

√
gH

depends on H but not on the wavelength λ. In shallow water, waves of all
wavelengths move at the same speed.

Stand at the end of Scripps pier (if you can get past the gate) and watch
the swells roll toward the beach. Because their vertical decay-scale is compa-
rable to their wavelength, the waves extend downward a distance comparable
to the spacing between wave crests. Where the ocean depth is greater than

Figure 1.4: Fluid velocity in a shallow-water wave moving to the right.
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a wavelength, the depth might as well be infinite; the waves don’t feel the
bottom. But where the ocean depth becomes smaller than a wavelength,
the DW description becomes inaccurate, and we must pass over to the gen-
eral description (1.1-2,1.10,1.11), which is valid for arbitrary H. When the
waves reach shallow water—H much less than a wavelength—the simpler,
SW description (1.19) applies.

The foregoing paragraph ignores a subtlety in all the preceding equations:
Strictly speaking, these equations apply only to the situation in which H is
a constant. We may talk about deep water, and we may talk about shallow
water, but we cannot—strictly speaking—use these equations to describe a
situation in which H varies. However, common sense suggests that we may
use our general description in the case where H changes very gradually. If
the mean water depth H changes by only a small percentage in a wavelength,
then the wave ought to behave as if the depth were constant at its local value.
This turns out to be correct.

Let x be the perpendicular distance toward shore. Let the mean water
depth H(x) decrease gradually in the x-direction. Then x-directed, incoming
waves ought to obey the slowly varying dispersion relation,

ω =
√
g k(x) tanh(k(x)H(x)) (1.21)

obtained by replacing k with k(x), and H with H(x), in (1.2). As H(x)
decreases toward the shore, k(x) must increase; the wavelength shortens as
the wave shoals. (To see this, take the derivative of (1.21) to show that dk/dx
and dH/dx must have opposite signs.) In very shallow water (1.21) becomes

SW ω =
√
gH(x)k (1.22)

and the phase speed c =
√
gH(x).

Why, you may ask, is it the wavenumber k and not the frequency ω that
must change to compensate the change in H? The frequency is proportional
to the rate at which wave crests pass a fixed point. Consider any two fixed
points—any two values of x. If the frequency were different at the two points,
then the number of wave crests between them would continually increase or
decrease (depending on which point had the higher frequency). No steady
state could exist. This is not the situation at the beach. Hence ω must be
constant. (In chapter 6 we will prove that this is so, provided that the waves
have small enough amplitudes, and that the depth changes gradually on the
scale of a wavelength.)
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Back on the pier, look closely to see if this is true. As the waves approach
shallow water, the wavelengths really do get shorter. The phase speed really
does decrease. Later, when we develop this slowly varying theory more com-
pletely, we will show that other things are happening too. In particular, the
wave amplitude A increases as the wave energy is squeezed into a smaller
depth.

Now lean over the pier and drop an object into the water. Observe where
it goes. If the object is a surfboard, it may move at the phase speed all
the way to the beach. If the object is a piece of tissue paper, it will move
forward with each wave crest, and backward with each wave trough, with
a very slow net movement toward the shore. The tissue paper is moving
with the water—not with the wave. Its velocity is the same as the velocity
of the surrounding fluid particles. What, then, is the trajectory of the fluid
particles?

First of all, what do we mean by a fluid particle? Fluid mechanicists usu-
ally ignore the fact that a fluid is composed of molecules and instead regard
the fluid as a continuum—a continuous distribution of mass and velocity in
space. This, it turns out, is a valid idealization if the fluid’s molecules collide
with each other frequently enough. It is the continuum velocity to which
(1.15c-d) refer. By fluid particle, we mean an arbitrarily small piece of this
continuum.

Let (xp(t), zp(t)) be the coordinates of a particular fluid particle, selected
arbitrarily. We find the motion of the fluid particle by solving the coupled
ordinary differential equations

dxp
dt

= u(xp(t), zp(t), t) (1.23a)

dzp
dt

= w(xp(t), zp(t), t) (1.23b)

For DW, the velocity fields are given by (1.15c-d), so we must solve

DW
dxp
dt

= Aωekzp cos (kxp − ωt) (1.24a)

DW
dzp
dt

= Aωekzp sin (kxp − ωt) (1.24b)

The exact solution of (1.24) is quite difficult (and also somewhat pointless
because the right-hand sides of (1.24) are themselves approximations, valid
only for small A). However, if A is small, the fluid particle never gets far
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from where it started. We can use this fact to justify an approximation that
makes it easy to solve (1.24).

Let (x0, z0) be the average location of the fluid particle. Then

xp(t) = x0 + δx(t) (1.25a)

zp(t) = z0 + δz(t) (1.25b)

where (δx(t), δz(t)) is the small displacement of the fluid particle from its
average location. Substituting (1.25) into (1.24) gives

DW
dδx

dt
= Aωek(z0+δz) cos (k(x0 + δx)− ωt) (1.26a)

DW
dδz

dt
= Aωek(z0+δz) sin (k(x0 + δx)− ωt) (1.26b)

This doesn’t look any simpler! But now we do a Taylor expansion, using the
fact that δx and δz are small quantities. Writing out only the first few terms
explicitly, equations (1.26) become

dδx

dt
= Aω

[
ekz0(1 + kδz + · · · )

]
[cos (kx0 − ωt)− k sin (kx0 − ωt)δx+ · · · ]

(1.27a)

dδz

dt
= Aω

[
ekz0(1 + kδz + · · · )

]
[sin (kx0 − ωt) + k cos (kx0 − ωt)δx+ · · · ]

(1.27b)

If we keep only the largest terms on the right-hand side, we have

DW
dδx

dt
= Aωekz0 cos (kx0 − ωt) (1.28a)

DW
dδz

dt
= Aωekz0 sin (kx0 − ωt) (1.28b)

Note that (1.28) also result from replacing (x, z) by (x0, z0) in (1.15c-d). We
solve (1.28) by direct integration, obtaining

DW δx(t) = C1 − Aekz0 sin (kx0 − ωt) (1.29a)

DW δz(t) = C2 + Aekz0 cos (kx0 − ωt) (1.29b)

where C1 and C2 are constants of integration. Since (δx, δz) represent the
departure of (xp, zp) from their average, both C1 and C2 must vanish. Hence

DW δx(t) = −Aekz0 sin (kx0 − ωt) (1.30a)

DW δz(t) = Aekz0 cos (kx0 − ωt) (1.30b)
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Figure 1.5: Particle paths in deep water.

Suppose x0 = 0. This corresponds to choosing a fluid particle that is located
directly under the crest of the wave at time t = 0. Since every fluid particle
is located under a wave crest at some time, this is not a real restriction. In
this case (1.30) reduces to

DW δx(t) = Aekz0 sin (ωt) (1.31a)

DW δz(t) = Aekz0 cos (ωt) (1.31b)

The trajectory corresponding to (1.31) is a circle of radius Aekz0 . This radius
is largest for fluid particles whose average location is at the ocean surface
(z0 = 0) and decays as z0 decreases. For a wave traveling to the right as
shown in figure 1.5, the particle moves clockwise in the circle, with the top
of the circle corresponding to the particle’s location beneath the crest, and
the bottom of the circle corresponding to its location beneath the trough.
However, because Ak � 1, the particle’s displacement from its average loca-
tion is always much smaller than the wavelength of the wave. At the order
of the approximation (1.31), the fluid particle returns, each wave period, to
its location at the beginning of the period; there is no net displacement in
the direction of wave propagation.

For the shallow-water wave, we see from (1.19c-d) that the vertical veloc-
ity w is smaller than the horizontal velocity u by a factor kH � 1. Thus in
SW the fluid particles move back and forth in the horizontal direction, with
negligible vertical displacement. For SW, we obtain instead of (1.27)

SW
dδx

dt
=
Aω

kH
[cos (kx0 − ωt)− k sin (kx0 − ωt)δx+ · · · ] (1.32a)

SW
dδz

dt
= Aω [1 + (z0 + δz)/H] [sin (kx0 − ωt) + k cos (kx0 − ωt)δx+ · · · ]

(1.32b)
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Figure 1.6: Particle paths in shallow water.

Again taking x0 = 0, we have

SW
dδx

dt
=
Aω

kH
[cos (ωt) + k sin (ωt)δx+ · · · ] (1.33a)

SW
dδz

dt
= Aω [1 + (z0 + δz)/H] [− sin (ωt) + k cos (ωt)δx+ · · · ]

(1.33b)

Keeping only the largest term on the right-hand side of (1.33), we obtain the
first approximation

SW
dδx

dt
=
Aω

kH
cos (ωt) (1.34a)

SW
dδz

dt
= −Aω(1 + z0/H) sin (ωt) (1.34b)

with solution

SW δx(t) =
A

kH
sin (ωt) (1.35a)

SW δz(t) = A(1 + z0/H) cos (ωt) (1.35b)

The trajectory (1.35) is an ellipse with major axis of length 2A/kH in the
horizontal direction, and minor axis of length 2A(1 + z0/H) in the vertical
direction. At the ocean bottom (z0 = −H), the fluid moition is purely
horizontal. See figure 1.6.

As in the DW case, the fluid particle experiences no net displacement at
this first order of approximation. But suppose that instead of just neglecting
the δx on the right-hand side of (1.33a), we replace it by the first approx-
imation (1.35a). We should then get a better approximation than (1.35a).
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Substituting (1.35a) into the right-hand side of (1.33a) and neglecting all
smaller terms, we obtain

SW
dδx

dt
=
Aω

kH

[
cos (ωt) +

A

H
sin2 (ωt)

]
(1.36)

Using the identity sin2 θ = 1
2
(1− cos 2θ), we integrate (1.36) to find that

SW δx(t) =
A

kH
sin(ωt)− A2

2kH2
sin(2ωt) +

A2ω

2kH2
t (1.37)

Once again, (1.37) should be a better approximation to the particle displace-
ment than (1.35a). The first term in (1.37) is the only term present in (1.35a).
The second term in (1.37) is, like the first term, an oscillatory term. Like the
first term, it causes no net displacement of the fluid particle. Moreover, it is
much smaller than the first term, because it is proportional to the square of
the wave amplitude A, which we have assumed to be infinitesimal.

The last term in (1.37) is also proportional to A2, but unlike the first two
terms, it is not an oscillatory term. In fact, it is proportional to the time t.
It represents a small, steady drift—often called the Stokes drift—of the fluid
particles, at speed

SW cdrift =
A2ω

2kH2
=

1

2

A2

H2
c (1.38)

in the direction of wave propagation. Because A is infinitesimal, the drift
speed cdrift is much smaller than the phase speed c.

For deep-water waves, we obtain the analog of (1.36) by substituting both
of (1.30) into (1.27a) with x0 = 0. We obtain

DW
dδx

dt
= Aω

[
ekz0(1 + kδz)

]
[cos(ωt) + k sin(ωt)δx]

= Aω
[
ekz0(1 + Aekz0k cos(ωt))

] [
cos(ωt) + Aekz0k sin2(ωt)

]
= Aωekz0

[
cos(ωt) + Akekz0(cos2(ωt) + sin2(ωt))

]
= Aωekz0

[
cos(ωt) + Akekz0

]
(1.39)

In the next-to-last step of (1.39), we have kept the terms proportional to A
and A2, but thrown away the smaller terms of size A3. Integrating (1.39)
gives the first approximation (1.30a), plus smaller oscillatory terms, plus a
drift term, just as in (1.37). To get the drift term by itself, we only need to
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Figure 1.7: Particle path exhibiting Stokes drift.

take the time average of (1.39), obtaining the drift velocity for deep water
waves:

DW cdrift = A2ωke2kz0 = A2k2e2kz0c (1.40)

At the order of the approximation (1.30), the fluid particles move in closed
paths, always returning to the place where they started. At the order of
the more accurate approximation (1.39), the particle paths don’t quite close.
The fluid particles experience a small net displacement in the direction of
wave propagation, as shown in figure 1.7

The drift speed is the speed at which our piece of tissue paper moves
toward the beach. In deep water, at the surface, the tissue paper drifts with
the speed A2ω3/g, according to (1.40). If the paper is neutrally buoyant at
the average submerged location z0, its drift speed is smaller by a factor of e2kz0

than at the surface. The SW drift speed (1.38) is independent of z. In both
DW and SW (and in the intermediate range, in which we would have to use
(1.10) and (1.11) in (1.23)), the drift speed is toward the beach at all levels.
If this were all that were happening, the waterline would advance steadily up
the beach, eventually reaching La Jolla Shores drive. This doesn’t happen!
Instead the shoreward drift is balanced by a return current that tends to be
independent of z. Since the drift current is smallest near the sea bottom, the
return current is most apparent there, where it is sometimes referred to as
undertow. The return current need not be uniform in the longshore direction;
often it is concentrated in rip currents at particular locations along the beach.
But it must exist, to compensate for the wave-induced drift of water particles
toward the beach.

It is important to emphasize that our formula for the drift velocity is—
like almost everything else in this course—based upon linear theory, which
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assumes that the wave amplitude A is small. Once again, this is the basic
assumption underlying Postulates #1 and #2. This means that our drift-
velocity formula is really only accurate seaward of the breaker zone. The
breaker zone is the boundary between the seaward region of approximately
linear dynamics in which Postulates #1 and #2 apply, and the shoreward
region of highly nonlinear dynamics, in which a more exact physical descrip-
tion must be used. The physics of the shoreward region, where wave breaking
leads to the formation of turbulent bores and rip currents, is much harder to
analyze than the seaward region.

We have learned almost everything we can from Postulate #1 by itself.
It is time to invoke Postulate #2, to see what happens when two or more
waves, each satisfying Postulate #1, are present together. However, before
moving on, we re-state Postulate #1 in its most general form:

Postulate #1. (re-stated, general version)
A single wave is described by the equations

η = A cos(kx+ ly − ωt+ α) (1.41a)

u = (u, v) = Aω
k

κ

cosh(κ(H + z))

sinh(κH)
cos(kx+ ly − ωt+ α) (1.41b)

w = Aω
sinh(κ(H + z))

sinh(κH)
cos(kx+ ly − ωt− π/2 + α) (1.41c)

Here, u = (u, v) is the horizontal fluid velocity; k = (k, l) is the wave vector;
and the frequency ω is given by the dispersion relation

ω =
√
gκ tanh(κH) (1.41d)

with κ = |k| =
√
k2 + l2. The wave propagates in the direction of k. Note

that k/κ is the unit vector in the direction of k. The constant α represents
an arbitrary phase shift.

For each wave of the form (1.41) there are four free parameters—four
things that you can choose arbitrarily. These are the two components of
the horizontal wavevector k, the amplitude A, and the phase constant α.
Everything else is determined. That is, the physics dictates the frequency ω,
the relative amplitudes of the u-, v-, and w-waves and their relative phases.

Our previous statement of Postulate #1 corresponds to the choices k =
(k, 0) with k positive, and α = 0. However, these are not real restrictions.



Salmon: Introduction to Ocean Waves 19

When only a single wave is present, it is always possible to rotate the hor-
izontal axes so that the wave propagates in the direction of the positive x-
axis, and it is always possible to shift the time coordinate so that the phase
constant α disappears. Therefore, our discussion of the single wave was a
completely general one.

Postulate #2 allows us to add together as many waves satisfying Postulate
#1 as we want. However, in the case of two or more waves, it is not possible
to simplify the situation nearly as much. We can rotate the axes so that one
of the waves propagates in the x-direction, and we can eliminate the phase
constant for one of the waves, but the general form of (1.41) is necessary to
cover all physical possibilities.



Chapter 2

Two waves

Postulate #1 tells us what basic waves are like. Postulate #2 tells us that we
can add them together. This property of adding waves together is tremen-
dously important, because, as it turns out, you can describe every possible
situation by adding together a sufficient number of basic waves. In typical
situations, sufficient means infinite. You need an infinite number of basic
waves to describe the situation! However, adding up an infinite number of
waves involves some fairly serious mathematics, which we begin to learn in
the next chapter.

What happens when waves are added together, or, as wave dynamicists
would prefer to say, superposed? In one word: interference. In some places
this interference is constructive, and the waves add up to something big. In
other places the interference is destructive, and the waves tend to cancel each
other out. You can demonstrate interference without considering an infinite
number of waves. In fact, you need only two waves to demonstrate some of
the most important properties of interfering waves.

In this section we consider two examples in which two waves interfere. In
the first example, the two waves are identical except for the fact that they
propagate in opposite directions. The result is a standing wave—something
that you have almost certainly seen before.

The second example is more interesting. It involves two nearly identical
waves moving in the same direction. If the two waves were absolutely iden-
tical, the result would be very boring indeed—a single wave twice as large.
But two nearly identical basic waves produce a single, slowly varying wave,
which offers the clearest illustration of something called the group velocity.
The group velocity is possibly the most important tool for understanding

20
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Figure 2.1: Standing wave at two times separated by a half period.

ocean waves. It will take several lectures to explain its full importance.
Now for the first example. Consider the case of two waves, with the

same frequency and amplitude, but propagating in opposite directions. The
surface elevation is

η = A cos(kx− ωt) + A cos(kx+ ωt) (2.1)

where k and ω are positive constants that satisfy the dispersion relation (1.2).
By the trigonometric identity

cos(a+ b) = cos a cos b− sin a sin b (2.2)

(2.1) is equivalent to
η = 2A cos(kx) cos(ωt) (2.3)

Interference between the waves has produced a standing wave. The nodes,
located where kx = π/2 + nπ for n an integer, are the places where the
surface elevation always vanishes. At the antinodes, kx = nπ, the surface
elevation oscillates between +2A and −2A, as shown in figure 2.1.

By Postulate #1, the horizontal velocity component corresponding to
(2.1) is

u = Aω
cosh(k(H + z))

sinh(kH)
cos(kx−ωt)−Aω cosh(k(H + z))

sinh(kH)
cos(kx+ωt) (2.4)

By (2.2), this is

u = 2Aω
cosh(k(H + z))

sinh(kH)
sin(kx) sin(ωt) (2.5)

The nodes of u are at kx = nπ, and the antinodes of u are at kx = π/2+nπ.



Salmon: Introduction to Ocean Waves 22

What are these standing waves good for? The solution (2.3) and (2.5)
describes a progressive wave with wavelength 2π/k that is perfectly reflected
from a seawall located at x = 0 (or at any x = nπ/k). Since the seawall is a
rigid vertical barrier, we must have u = 0 at the seawall. This solution works
to either side of the seawall. The incoming wave can have any wavelength;
the outgoing wave will have the same wavelength.

Now suppose there are two seawalls located at x = 0 and x = L. Alterna-
tively, suppose we have a harbor or bay, located on 0 < x < L, with vertical
sidewalls at x = 0 and x = L. Since there can be no flow through the sides
of the bay, the waves must obey the boundary condition u = 0 at x = 0 and
at x = L, at all times. In this case the wavenumber k is no longer arbitrary.
The velocity (2.5) satisfies both boundary conditions only if k belongs to the
infinite discrete set

{kn =
nπ

L
} = {π

L
,
2π

L
,
3π

L
, . . .} (2.6)

This choice of wavenumber corresponds to placing the nodes of u at x = 0
and x = L.

For each such wavenumber in the set (2.6), we can choose a different
arbitrary amplitude A, but the frequency ω is determined by the dispersion
relation. Thus a possible solution in the bay is

η = 2An cos(knx) cos(ωnt) (2.7a)

u = 2Anωn
cosh(kn(H + z))

sinh(knH)
sin(knx) sin(ωnt) (2.7b)

where An is any number, n is any positive integer, kn = nπ/L, and

ωn =
√
gkn tanh(knH) (2.8)

The solution (2.7) satisfies our two postulates, and it satisfies the boundary
condition at each end of the bay. It is called a normal mode.

Postulate #2 allows us to add together as many normal modes—as many
pairs of basic waves—of the form (2.7) as we wish. The result is

η =
∞∑
n=1

2An cos(knx) cos(ωnt) (2.9a)

u =
∞∑
n=1

2Anωn
cosh(kn(H + z))

sinh(knH)
sin(knx) sin(ωnt) (2.9b)
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which is the sum of the normal modes in a one-dimensional bay. The hori-
zontal velocity corresponding to mode n has n−1 nodes within the bay itself,
besides the nodes at each end.

Now what about the y-direction? (When was the last time you saw a one-
dimensional bay?) Suppose that the other two boundaries lie at y = 0, d.
The boundary conditions there are v = 0; the y-component of velocity must
vanish. But our solution satisfies these boundary conditions automatically,
because our solution has v = 0 everywhere. It describes a mode in which the
water particles move only in the x-direction. Of course, we can find analogous
modes in which the water moves only in the y-direction. And there are even
modes that oscillate simultaneously in both directions. For the moment, we
restrict ourselves to the one-dimensional case.

In the shallow-water limit, the complete, one-dimensional, normal-mode
solution is

η =
∞∑
n=1

2An cos(knx) cos(ωnt+ αn) (2.10)

and

SW u =
∞∑
n=1

2Anωn
knH

sin(knx) sin(ωnt+ αn) (2.11)

with
SW ωn =

√
gHkn (2.12)

We have added an arbitrary phase constant to each mode. Equations (2.10-
12) represent the general solution for waves in a one-dimensional bay. What
exactly does this mean? It means that every possibility allowed by the physics
corresponds to (2.10-12) for some choice of the An’s and αn’s. To see how
this works, we suppose that u and η are given at some initial time, say t = 0.
We will show that knowledge of u(x, 0) and η(x, 0) determines all the An’s
and all the αn’s. The solution at all subsequent times is then given by (2.10)
and (2.11).

Setting t = 0 in (2.10-11), and making use of (2.12), we obtain

η(x, 0) =
∞∑
n=1

2An cos(knx) cos(αn) (2.13)

and √
H

g
u(x, 0) =

∞∑
n=1

2An sin(knx) sin(αn) (2.14)



Salmon: Introduction to Ocean Waves 24

Our aim is to determine the An’s and αn’s from (2.13) and (2.14). To do
this we multiply both sides of (2.13) by cos(kmx) where km = mπ/L, and
integrate the resulting equation between x = 0 and x = L. The result is∫ L

0

dx η(x, 0) cos(kmx) =
∞∑
n=1

2An cos(αn)

∫ L

0

dx cos(knx) cos(kmx) (2.15)

However, ∫ L

0

dx cos(
nπ

L
x) cos(

mπ

L
x) =

{
L/2 if n = m

0 otherwise
(2.16)

Hence only one of the terms in the sum on the right-hand side of (2.15) is
nonzero, and (2.15) reduces to∫ L

0

dx η(x, 0) cos(kmx) = LAm cos(αm) (2.17)

which holds for every positive integer m. We obtain a similar equation by
multiplying (2.14) by sin(kmx) and integrating over the same interval to get√

H

g

∫ L

0

dx u(x, 0) sin(kmx) = LAm sin(αm) (2.18)

For each m, equations (2.17) and (2.18) determine Am and αm. This proves
the claim that, for arbitrary initial conditions u(x, 0) and η(x, 0), the wave
field is uniquely determined as the sum of normal modes. The general method
of representing an unknown field as the sum of sines and cosines, and deter-
mining the amplitudes and phases using tricks like (2.16), is called Fourier
analysis. Fourier analysis is the primary mathematical tool for studying
linear waves.

Now for the second example. Consider the case of two waves, again with
the same amplitude, but now propagating in the same direction, toward
positive x:

η = A cos(k1x− ω1t) + A cos(k2x− ω2t) (2.19)

Each wave obeys the dispersion relation (1.2). Defining

k̄ =
1

2
(k1 + k2), ∆k =

1

2
(k2 − k1), ω̄ =

1

2
(ω1 + ω2), ∆ω =

1

2
(ω2 − ω1)

(2.20)
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Figure 2.2: The envelope ASV moves at half the speed of η.

we can rewrite (2.19) as

η = A cos(θ̄ −∆θ) + A cos(θ̄ + ∆θ) (2.21)

where
θ̄ = k̄x− ω̄t and ∆θ = ∆k x−∆ω t (2.22)

By the same trigonometric identity (2.2), (2.21) is equivalent to

η = 2A cos(∆θ) cos(θ̄) = 2A cos(∆k x−∆ω t) cos(k̄x− ω̄t) (2.23)

Suppose that the two wavenumbers, and hence the two frequencies, differ by
only a small amount. For small ∆k and ∆ω, (2.23) describes a basic wave
with wavenumber k̄, frequency ω̄, and slowly varying amplitude

ASV (x, t) ≡ 2A cos(∆k x−∆ω t) (2.24)

By ‘slowly varying’ we mean that ASV does not change by much over a
wavelength 2π/k̄ or wave period 2π/ω̄ of the ‘carrier wave.’ The expression
(2.24) is also called the wave envelope. Refer to figure 2.2. The wave crests
and troughs move at the phase speed

c̄ =
ω̄

k̄
(2.25)

but the envelope moves at the group velocity

cg =
∆ω

∆k
(2.26)
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In the limit of very small differences between the two wavenumbers and
frequencies, these equations become

c =
ω

k
and cg =

dω

dk
(2.27)

This result holds for any type of wave, that is, for any dispersion relation
ω = ω(k). In the case of deep water waves, we have

DW ω =
√
gk (2.28)

Therefore

DW c =

√
g

k
and cg =

d

dk

√
gk =

1

2

√
g

k
=

1

2
c (2.29)

In deep water, the envelope moves at half the speed of the crests and troughs.
Individual waves appear to pass through the group, from rear to front, grow-
ing and then decaying in turn. In the shallow water case, we have

SW ω =
√
gHk (2.30)

so

SW c =
√
gH and cg =

d

dk
(
√
gHk) =

√
gH = c (2.31)

In the shallow water case, the phase velocity and the group velocity are the
same; the wave crests and troughs hold their place within the group. Waves
in which the phase speed does not depend on the wavenumber (i.e. does not
depend on the wavelength) are said to be nondispersive. For nondispersive
waves, the group velocity always equals the phase velocity.

If the dispersion relation is such that the phase velocity depends on the
wavenumber (as in the deep water case), then the group velocity differs from
the phase velocity. However, the group velocity can be greater or less than
the phase velocity, depending on the particular dispersion relation. For deep
water gravity waves, the phase velocity exceeds the group velocity, but for
capillary waves the opposite is true (as you will see in a homework problem).

Wave groups resemble what surfers call sets, short series of high amplitude
waves followed by a series of smaller waves. Single groups—called wave
packets—can also occur (figure 2.3), and it is found that these packets, like
the envelopes in our example, move at the group velocity. Once again, in DW,
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Figure 2.3: A wavepacket.

the individual wave crests and troughs move faster than the group velocity,
and thus appear from nowhere at the back of the wave packet, and disappear
into nothing at its front.

At first sight, the sudden appearance and equally sudden vanishing of
individual waves seems disturbing. It seems to violate some conservation
law. But individual waves are not generally conserved. Energy is conserved.
And energy is associated with the envelopes—not with the individual waves.
Thus energy moves at the group velocity—not the phase velocity.

What is the energy associated with the waves described by (2.23)? First
there is the potential energy associated with height of the water particles in
the Earth’s gravity field. Then there is the kinetic energy associated with the
velocity of the fluid particles. Let us try to calculate the latter. To do this,
we need to write down the velocity field associated with (2.23). By Postulate
#1, and assuming we are in deep water, it is

DW u = 2Aωek̄z cos(∆k x−∆ω t) cos(k̄x− ω̄t) (2.32)

plus a similar expression for the vertical velocity w. The kinetic energy per
unit volume is 1

2
ρ(u2 + w2), where ρ is the mass density, the mass per unit

volume. Hence the average kinetic energy per unit horizontal area, at x = x0

and t = t0, is

DW K(x0, t0) = ρ

∫ 0

−∞
dz

1

λ

∫ x0+λ

x0

dx
1

2
(u2 + w2) (2.33)

By average, we mean the average over a wavelength; that explains the second
integral in (2.33).

Let’s calculate the contribution of the horizontal velocity u to (2.33). To
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do this we must integrate∫ 0

−∞
dz

1

λ

∫ x0+λ

x0

1

2
4A2ω2e2k̄z cos2(∆k x−∆ω t0) cos2(k̄x− ω̄t0)

≈ 2A2ω2 cos2(∆k x0 −∆ω t0)

∫ 0

−∞
dz e2k̄z 1

λ

∫ x0+λ

x0

dx cos2(k̄x− ω̄t0)

= 2A2ω2 cos2(∆k x0 −∆ω t0)
1

2k̄

1

2

=
1

8

ω2

k̄
4A2 cos2(∆k x0 −∆ω t0)

=
1

8

ω2

k̄
ASV (x0, t0)2 (2.34)

where ASV (x0, t0) is the slowly varying amplitude, defined by (2.24). In the
second step of (2.34) we have assumed that the factor cos(∆k x − ∆ω t0)
changes so little over a single wavelength that we can replace it by its con-
stant value at (x0, t0). To compute the total average kinetic energy, we must
compute the contribution of the vertical velocity w. It turns out that this is
exactly equal to (2.34). Therefore the total kinetic energy is

DW K = ρ
1

4

ω2

k̄
ASV

2 =
1

4
ρg ASV

2 (2.35)

Next we need to compute the average potential energy. This, it turns out,
is exactly equal to the kinetic energy! So the total average energy per unit
horizontal area is

E(x, t) =
1

2
ρg ASV (x, t)2 (2.36)

It turns out that (2.36) is correct for both deep water and for shallow water
waves. In fact, it holds in the general case of arbitrary depth. The important
fact for us is that (2.36) is proportional to the square of the slowly varying
amplitude ASV (x, t). It is solely determined by the wave envelope, which
moves at the group velocity. This justifies the statement that the energy
moves at the group velocity.

Let x1 < x2 be two fixed locations. If the energy between x1 and x2 is
conserved, then

d

dt

∫ x2

x1

dx E(x, t) = F (x1, t)− F (x2, t) (2.37)
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where F (x, t) is the flux of energy past x, in the positive x-direction, at time
t. Equation (2.37) holds if there is no local forcing or dissipation. If (2.37)
holds for any x1 and x2, then it must be true that

∂E

∂t
= −∂F

∂x
(2.38)

Equations (2.37) and (2.38) are equivalent. In physics, equations of the form
(2.38) are called conservation laws.

Our statement that energy moves at the group velocity is the same as
saying

F = cgE (2.39)

Then (2.38) becomes
∂E

∂t
+

∂

∂x
(cgE) = 0 (2.40)

Equation (2.40) expresses the conservation of wave energy in one dimension.
It is one of the most important equations in the study of waves.

The energy conservation law (2.40) allows us to predict how waves change
in amplitude as they approach the beach. Earlier we showed how the slowly
varying dispersion relation

SW ω =
√
gH(x)k(x) (2.41)

allows us to predict the change in wavenumber k(x) that occurs in a wave
directly incident on a beach. From (2.41) we found that the wavenumber
varies as

SW k(x) ∝ 1√
H(x)

(2.42)

Equation (2.40) allows us to make the corresponding prediction for the slowly
varying wave amplitude A(x). Outside the breaker zone, wave dissipation is
negligible, so (2.40) holds. In the case of steady waves, ∂E/∂t = 0, and
(2.40) implies

cg E = constant (2.43)

For shallow water waves, this is implies

SW
√
gH(x) A2(x) = constant (2.44)

so the wave amplitude varies as

SW A(x) ∝ 1

H(x)1/4
(2.45)
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The increase in amplitude that occurs as waves shoal leads to wave breaking.
According to one idea, shoaling waves break when

2A = 0.78 H (2.46)



Chapter 3

Many waves

In the previous lecture, we considered the case of two basic waves propagating
in one horizontal dimension. However, Postulate #2 lets us have as many
basic waves as we want. Suppose we want to have N waves. If N waves are
present, the surface elevation takes the form

η(x, t) =
N∑
i=1

Âi cos(kix− ω(ki)t+ αi) (3.1)

where the Âi, ki, and αi represent 3N arbitrary parameters. We put the hats
on Âi so we can use un-hatted Ai for something else. As always, the ω(ki)
are determined by the dispersion relation,

ω(ki) =
√
gki tanh(kiH) (3.2)

and are always positive. If we define

θi = kix− ω(ki)t (3.3)

then (3.1) can be written in the form

η(x, t) =
N∑
i=1

Âi cos(θi + αi) =
N∑
i=1

(Âi cosαi cos θi − Âi sinαi sin θi) (3.4)

Then, defining

Ai = Âi cosαi and Bi = −Âi sinαi (3.5)

31
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we have

η(x, t) =
N∑
i=1

Ai cos(kix− ω(ki)t) +Bi sin(kix− ω(ki)t) (3.6)

The form (3.6) is equivalent to (3.1), but it is sometimes more useful. The
arbitrary parameters in (3.6) are Ai, Bi, and ki. In both (3.1) and (3.6),
the sign of each ki determines the propagation direction of the corresponding
wave.

If you have studied mechanics, then you know that the evolution of any
mechanical system is determined by:

1. Newton’s laws of motion, and

2. the location and velocity of every component of the system at some
initial time, say t = 0.

The corresponding statement for us is that η(x, t) is determined by:

1. Postulates #1 and #2, and

2. the initial conditions η(x, 0) and ∂η/∂t(x, 0).

Suppose the latter are given to be F (x) and G(x) respectively. Then the
solution of the initial value problem corresponds to choosing the arbitrary
parameters in (3.6) to satisfy

η(x, 0) = F (x) and
∂η

∂t
(x, 0) = G(x) (3.7)

We can do this with N waves if we can choose the wavenumbers and wave
amplitudes to satisfy the equations

F (x) =
N∑
i=1

Ai cos(kix) +Bi sin(kix) (3.8)

G(x) =
N∑
i=1

Aiω(ki) sin(kix)−Biω(ki) cos(kix) (3.9)

Is it ever possible to do this? If so, how many waves are needed?
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Well, you might get lucky. For particularly simple F (x) and G(x), it
might turn out that you need only a few waves. For example, if F (x) =
5 cos(3x) and G(x) = 5ω(3) sin(3x), then you need only a single wave. How-
ever, we are interested in the general case, in which F (x) and G(x) are
completely arbitrary; they can be anything whatsoever. It turns out that,
in the general case, you need every possible wavenumber. Thus, the general
solution takes the form

η(x, t) =

∫ +∞

−∞
dk [A(k) cos(kx− ω(k)t) +B(k) sin(kx− ω(k)t)] (3.10)

in which the sum in (3.6) has been replaced by an integral. The quantities
A(k)dk and B(k)dk in (3.10) are analogous to the quantities A(ki) and B(ki)
in (3.6). The initial value problem (3.7) is solved if we can find functions
A(k) and B(k) that satisfy

F (x) =

∫ +∞

−∞
dk [A(k) cos(kx) +B(k) sin(kx)] (3.11)

G(x) =

∫ +∞

−∞
dk [A(k)ω(k) sin(kx)−B(k)ω(k) cos(kx)] (3.12)

To find these A(k) and B(k), we make use of a very powerful theorem in
mathematics.

Fourier’s theorem. For almost any function f(x),

f(x) =

∫ ∞
0

dk [a(k) cos(kx) + b(k) sin(kx)] (3.13)

where

a(k) =
1

π

∫ +∞

−∞
dx f(x) cos(kx) (3.14a)

b(k) =
1

π

∫ +∞

−∞
dx f(x) sin(kx) (3.14b)

for all positive k.

In essence, Fourier’s theorem says that you can express any function f(x)
as the sum of sines and cosines, provided that you assign the right weight to
each sine and each cosine; (3.14) tells you how to assign the weights. If you are
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given f(x), then a(k) and b(k) are determined by (3.14). Conversely, if you
are given a(k) and b(k), then f(x) is determined by (3.13). The functions
a(k) and b(k) are said to be the Fourier transform of f(x). The function
f(x) is the inverse transform of a(k) and b(k). The transform and its inverse
transform constitute a Fourier transform pair. Either member of the pair
determines the other member. You might be wondering why the transform
contains two functions, a(k) and b(k), while f(x) is only one function. That
seems unfair! The reason is that a(k) and b(k) are defined only for positive
k, while f(x) is defined for both positive and negative x.

This is a good place to say that Fourier’s theorem can be stated in a
great many equivalent but somewhat dissimilar forms. For example, instead
of (3.13) many books write

f(x) =

∫ ∞
−∞

dk â(k)eikx (3.15)

where â(k) is complex. In fact, if you look up Fourier’s theorem in a math
book, you are more likely to find (3.15) than (3.13). In this course, we will
use (3.13-14) and we will not confuse things by discussing other forms. Your
math courses will teach you all the delicate points about Fourier analysis.
The goal here is to develop your physical intuition.

We shall “prove” Fourier’s theorem by showing that it holds in one par-
ticular case, and then invite you to test any other cases that you like. Our
test case will be the function

f(x) = e−βx
2

(3.16)

where β is a positive constant. First we use (3.14) to calculate the weights.
We find that

a(k) =
1

π

∫ +∞

−∞
dx e−βx

2

cos(kx) =
2

π

∫ +∞

0

dx e−βx
2

cos(kx) =
1√
πβ

e−k
2/4β

(3.17)

b(k) = 0 (3.18)

In working out (3.17) we have used the general formula∫ ∞
0

e−qx
2

cos(px)dx =
1

2

√
π

q
e−p

2/4q (3.19)
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which can be found in any table of definite integrals. The result (3.18)
follows quickly from the fact that the product of an even function and an
odd function is an odd function.

If Fourier’s theorem is correct, then it must by (3.13) be true that

e−βx
2

=
1√
πβ

∫ ∞
0

dk e−k
2/4β cos(kx) (3.20)

We leave it to you to verify (3.20)—by using the formula (3.19) again.
So what is all this good for? We can use Fourier’s theorem to obtain the

general solution of our initial value problem. Recall that the problem was to
find the wave amplitudes A(k) and B(k) that satisfy the initial conditions
(3.11) and (3.12). To make (3.11) resemble (3.13), we rewrite (3.11) in the
form

F (x) =

∫ +∞

0

dk [(A(k) +A(−k)) cos(kx) + (B(k)−B(−k)) sin(kx)] (3.21)

We have changed the integration limits in (3.11) to match those in (3.13).
Then Fourier’s theorem tells us that

A(k) + A(−k) =
1

π

∫ +∞

−∞
dx F (x) cos(kx) (3.22a)

B(k)−B(−k) =
1

π

∫ +∞

−∞
dx F (x) sin(kx) (3.22b)

Equations (3.22) are two equations in four unknowns. The four unknowns
are the amplitudes A(k) and A(−k) of the right- and left-propagating cosine
waves, and the amplitudes B(k) and B(−k) of the right- and left-propagating
sine waves. We get two more equations for the same four unknowns by
applying Fourier’s theorem to our other initial condition (3.12). The result
is

A(k)− A(−k) =
1

πω(k)

∫ +∞

−∞
dx G(x) sin(kx) (3.23a)

B(k) +B(−k) = − 1

πω(k)

∫ +∞

−∞
dx G(x) cos(kx) (3.23b)
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Solving (3.22) and (3.23) for the four unknowns, we obtain

A(k) =
1

2π

∫ +∞

−∞
dx F (x) cos(kx) +

1

2πω(k)

∫ +∞

−∞
dx G(x) sin(kx) (3.24a)

B(k) =
1

2π

∫ +∞

−∞
dx F (x) sin(kx)− 1

2πω(k)

∫ +∞

−∞
dx G(x) cos(kx) (3.24b)

which hold for both positive and negative k. In summary, the wave field cor-
responding to the initial conditions (3.7) is (3.10) with the wave amplitudes
given by (3.24).

This is a remarkable achievement. Using only our two postulates, we
have shown how to find the wave field that results from any set of initial
conditions. The result is a tribute to the power of Postulate #2, which allows
us to add together as many waves satisfying Postulate #1 as we please. By
adding together an infinite number of waves, we acquire the ability to handle
the general case. Of course, (3.10) only gives us the surface elevation. But
Postulate #1 tells us that the accompanying velocity field must be

u(x, t) =

∫ +∞

−∞
dk [A(k)ω(k)

cosh k(H + z)

sinh kH
cos(kx− ω(k)t)

+B(k)ω(k)
cosh k(H + z)

sinh kH
sin(kx− ω(k)t)] (3.25)

The amplitudes in (3.25) are the same ones as in (3.10)—the amplitudes
given by (3.24).

There is a catch to this, as you may already be suspecting. The integrals
in (3.24) and (3.25) might be very hard to do. Of course one could get
lucky. For a particular F (x) and G(x) it might turn out that the integrals
are easy to do, or to look up. More typically (3.24) are easy, but the integrals
(3.10) and (3.25) are impossible. Even more typically, all the integrals are
impossible to do exactly. But that is not really the point. Just by writing
down (3.10), (3.24) and (3.25), we have solved the problem in principle. If
we absolutely need a quantitatively accurate answer, we can always evaluate
these integrals with the help of a computer, using numerical techniques.
Sometimes, however, we don’t need a perfectly accurate answer; we just want
to see what’s going on. What are these formulas really telling us? In that
case, a good method is to consider special cases for which the calculations
are easier.
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In that spirit, we suppose that the initial surface elevation is a ‘motionless
hump.’ That is, we suppose that G(x) = 0. We further suppose that the
hump is symmetric about x = 0, i.e. that F (x) = F (−x). An example
of such a function is F (x) = e−βx

2
, the same function we used to illustrate

Fourier’s theorem. With these restrictions on the initial conditions, the wave
amplitudes (3.24) take the simple form

A(k) =
1

2π

∫ +∞

−∞
dx F (x) cos(kx) and B(k) = 0 (3.26)

so our solution is

η(x, t) =

∫ +∞

−∞
dk A(k) cos(kx− ω(k)t) (3.27)

with A(k) given by (3.26). The solution (3.27) contains no sine waves, and,
because (3.26) tells us that A(k) = A(−k), the amplitude of the left-moving
wave equals the amplitude of the right-moving wave at the same wavelength.
Let us rewrite (3.27) to emphasize that fact. We write

η(x, t) = ηL(x, t) + ηR(x, t) (3.28)

where

ηR(x, t) =

∫ ∞
0

dk A(k) cos(kx− ω(k)t) (3.29)

represents the right-moving wave, and where

ηL(x, t) =

∫ 0

−∞
dk A(k) cos(kx− ω(k)t)

=

∫ ∞
0

dk A(−k) cos(−kx− ω(−k)t)

=

∫ ∞
0

dk A(k) cos(kx+ ω(k)t) (3.30)

represents the left-moving wave. In simplifying (3.30), we have used the facts
that the cosine is an even function, cos(s) = cos(−s), and that the frequency
is always positive, ω(k) = ω(−k) > 0. By the even-ness of the cosine we see
that

ηL(−x, t) = ηR(x, t) (3.31)
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Thus the left-moving waves are a mirror image of the right-moving waves.
Of course, this is a consequence of the symmetry of our initial conditions.

Our results hold for any kind of wave—deep water waves, shallow water
waves, or waves in between. But suppose we are dealing with shallow water
waves. This is subtle, because the integrations in (3.29) and (3.30) run over
all k, and high enough k will certainly violate kH � 1. Their wavelengths
will be less than the fluid depth. What we are really assuming is that A(k) is
small for those large k. And that, in turn, is an assumption about our initial
conditions. Our ‘motionless hump’ must be very broad.

In the case of shallow water waves (3.27) becomes

SW η(x, t) = ηL(x, t) + ηR(x, t)

=

∫ ∞
0

dk A(k) cos(k(x+ ct)) +

∫ ∞
0

dk A(k) cos(k(x− ct))

=
1

2
F (x+ ct) +

1

2
F (x− ct) (3.32)

where c =
√
gH is the shallow water phase speed, because by (3.21)

F (ξ) = 2

∫ ∞
0

dk A(k) cos(kξ). (3.33)

For the particular initial condition

η(x, 0) = F (x) = e−βx
2

(3.34)

the shallow-water solution is

SW η(x, t) =
1

2
e−β(x+ct)2 +

1

2
e−β(x−ct)2 (3.35)

Thus the initial hump splits symmetrically into two, mirror-image parts,
which move apart without changing their shape. This property of ‘not chang-
ing shape’ is a peculiar property of nondispersive waves. It depends critically
on the fact that all the basic cosine waves move at the same speed, regardless
of wavelength. Thus it applies only to shallow water waves. For the more
interesting case of deep water waves, no simplification like (3.32) is possible;
we must attack the general solution (3.29-30) by other means. That is our
next assignment.



Chapter 4

Waves generated by a distant
storm

Imagine the following situation. Far across the Pacific, a powerful storm
occurs within a specific region and a specific time interval. The wind churns
up the waves, and they begin to propagate toward San Diego. Idealizing to
the one-dimensional case, we let the location of the storm be (near) x = 0,
and we let the time of the storm be (around) t = 0. The precise way in which
the storm generates waves is quite complicated. We shall say more about it
in the next chapter. For present purposes, we imagine that the storm kicks
up the waves near (x, t) = (0, 0), and then stops. We pick up the problem at
that point. Thus the problem to be solved is this: given the sea state just
after the storm (as initial condition), find the sea state at San Diego at a
much later time, when the waves from the storm finally reach our shore.

The ‘initial condition’ in the aftermath of the storm will be quite compli-
cated, but we shall idealize it as a ‘motionless hump’ with the same spatial
symmetry as considered in the previous lecture. Then the solution to the
problem is given by (3.28-30) with the amplitudes A(k) determined by the
exact form of the initial hump. To get the answer, we need only evaluate the
integrals in (3.29) and (3.30).

The problem we have set is a severely idealized one, but it can teach us a
great deal about the general situation. The key assumption—the assumption
that allows us to work out the answer—is that the storm takes place at a
specific place and time, and one that is well separated from the location and
time at which we want to know the answer.

Suppose that, in our one-dimensional world, San Diego lies to the right

39
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of the storm, at large positive x. Then we need only keep track of the right-
moving waves. We need only evaluate

ηR(x, t) =

∫ ∞
0

dk A(k) cos(kx− ω(k)t) (4.1)

at large positive x and t—large t, because the waves generated at t = 0 take
a long time to cross the ocean. With this in mind, we re-write (4.1) in the
form

ηR(x, t) =

∫ ∞
0

dk A(k) cos(tφ(k)) (4.2)

where
φ(k) ≡ k

x

t
− ω(k) (4.3)

We shall evaluate (4.2) for t → ∞, but with the quotient x/t in (4.3) held
fixed. In that case, φ(k) depends only on k. This is the mathematically
cleanest way to proceed. Of course x/t can have any value we want, and, by
allowing x/t to take all possible values after we have performed the integral
(4.2), we will have the solution for all large x and t.

What do we use for A(k)? The amplitudes A(k) are determined by the ini-
tial conditions—the sea surface elevation just after the storm—via Fourier’s
theorem. We shall assume only that A(k) depends smoothly on k. This turns
out to be a critical assumption, and it deserves further comment. But the
comment will make better sense after we have finished the calculation. For
now we simply emphasize: A(k) depends smoothly on k.

For large enough t, even small changes in φ(k) will cause rapid oscillations
in the factor cos(tφ(k)) as k increases inside the integral (4.2). However, if
A(k) is smooth, these oscillations produce canceling contributions to (4.2).
This is true everywhere except where φ′(k) = 0; there changes in k produce
no change in φ(k), as illustrated in figure 4.1. We therefore assume that, as
t → ∞, the dominant contribution to (4.2) comes from wavenumbers near
the wavenumber k0 at which

φ′(k0) =
x

t
− ω′(k0) = 0 (4.4)

According to (4.4), k0 is the wavenumber of the wave whose group velocity
cg satisfies x = cgt.

With k0 defined by (4.4) for our chosen x/t, we approximate

ηR(x, t) ≈
∫ k0+∆k

k0−∆k

dk A(k) cos(tφ(k)) ≈ A(k0)

∫ k0+∆k

k0−∆k

dk cos(tφ(k)) (4.5)
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Figure 4.1: The two factors in the integrand of eqn (4.2).

where ∆k is a small, arbitrary constant. In (4.5) we have replaced A(k) by
A(k0) because, assuming that A(k) is a smooth function, it changes very
little within the narrow range of wavenumbers between k0−∆k and k0 +∆k.

Since the integral (4.5) is over a narrow range of wavenumbers centered
on k0, we can approximate φ(k) by a truncation of its Taylor-series expansion
about k0. The Taylor series is

φ(k) = φ(k0) + φ′(k0)(k − k0) +
1

2
φ′′(k0)(k − k0)2 + · · ·

= (k0
x

t
− ω(k0)) + 0− 1

2
ω′′(k0)(k − k0)2 + · · · (4.6)

where the second term vanishes on account of (4.4). Keeping only the first
two non-vanishing terms in (4.6), substituting the result into (4.5), and using
the trigonometric identity (2.2), we obtain

ηR(x, t) ≈ A(k0) cos(θ0)I1(t) + A(k0) sin(θ0)I2(t) (4.7)

where θ0 ≡ k0x− ω(k0)t and

I1(t) =

∫ k0+∆k

k0−∆k

dk cos(
t

2
ω′′(k0)(k − k0)2) (4.8a)

I2(t) =

∫ k0+∆k

k0−∆k

dk sin(
t

2
ω′′(k0)(k − k0)2) (4.8b)

The rest of the problem is just mathematics. To perform the integrals in
(4.8), we change the integration variable from k to

α =

√
t

2
|ω′′(k0)|(k − k0) (4.9)
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Then, keeping in mind that ω′′(k0) is negative in our case, we have

I1(t) =

√
2

t|ω′′(k0)|

∫ +∆α

−∆α

dα cos(α2) (4.10a)

I2(t) =

√
2

t|ω′′(k0)|

∫ +∆α

−∆α

dα sin(−α2) (4.10b)

where

∆α =

√
t

2
|ω′′(k0)|∆k (4.11)

The limit t→∞ corresponds to ∆α→∞ for fixed ∆k. Since

lim
∆α→∞

∫ +∆α

−∆α

dα cos(α2) =

∫ +∞

−∞
dα cos(α2) =

√
π

2
(4.12a)

lim
∆α→∞

∫ +∆α

−∆α

dα sin(α2) =

∫ +∞

−∞
dα sin(α2) =

√
π

2
(4.12b)

we obtain

I1(t) = −I2(t) =

√
π

t|ω′′(k0)|
(4.13)

so, finally,

ηR(x, t) ≈ A(k0)

√
π

t|ω′′(k0)|
(cos θ0 − sin θ0)

= A(k0)

√
2π

t|ω′′(k0)|
cos(k0x− ω(k0)t+

π

4
) (4.14)

The integrals in (4.12) can be looked up.
According to (4.14), the surface elevation far from the storm is a single,

slowly varying wave. According to (4.4), its wavenumber k0 is the wavenum-
ber of the wave that travels, at its group velocity, the distance x between
us and the storm, in the time t since the storm. Here is further evidence
that the wave energy travels at the group velocity. We see a single wave
because we are so far from the storm. Only one particular wave has the right
wavenumber to reach our location in the time since the storm.

How has the vast separation between us and the storm been built into
our calculation? In two ways. First, by our assumption that t → ∞ (for
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fixed x/t). And second, by our assumption that A(k) is a smooth function.
The latter assumption is equivalent to the assumption that the initial surface
distribution η(x, 0) = F (x) is concentrated near x = 0. How do we see this?
Suppose, for example, that F (x) = F0e

−βx2 with F0 and β positive constants.
We have used this example before! The larger the constant β, the more F (x)
is concentrated near x = 0. For this choice of F (x), (3.26) gives

A(k) =
1

π

∫ ∞
0

dx F (x) cos(kx) =
F0

2
√
πβ

e−k
2/4β (4.15)

where we have used the formula (3.19). We can describe this A(k) as a hump
whose width (in k-space) is inversely proportional to the width of F (x) (in
x-space). Thus, as β → ∞ (F (x) sharply concentrated at x = 0), A(k)
becomes an infinitely wide hump. That is, A(k) becomes very smooth.

What is true in this particular example is true in general. The more
concentrated the F (x), the more spread out is its Fourier transform A(k).
When you study quantum mechanics, you will see that Heisenberg’s Uncer-
tainty Principle corresponds to this same mathematical fact. In that context,
and speaking very very roughly, F (x) is the probability of finding a particle
at location x, and A(k) is the probability that the particle has velocity k.
(Never mind the wrong units—Planck’s constant fixes that!) Just remember
that you heard it first in a course on ocean waves.

To better admire our final answer, we re-write (4.14) in the form of a
slowly varying wavetrain,

ηR(x, t) ≈ ASV (x, t) cos
(
k(x, t)x− ω(x, t)t+

π

4

)
(4.16)

Here,

ASV (x, t) = A(k(x, t))

√
2π

t|ω′′(k(x, t))|
(4.17)

is the slowly varying amplitude; k(x, t) is the slowly varying wavenumber;
and ω(x, t) is the slowly varying frequency. By slowly varying we mean that
these three quantities change by only a small percentage over each wavelength
or period.

Let (x, t) be given. The slowly varying wavenumber at (x, t) is determined
as the solution to (4.4), namely

ω′(k) = x/t (4.18)
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For deep water waves, this would be

DW
1

2

√
g

k
= x/t so k(x, t) =

gt2

4x2
(4.19)

If x and t are large, it is obvious that k(x, t) changes very little when x
changes by a wavelength, or when t changes by a wave period. With k(x, t)
thus determined, ω(x, t) is determined by the dispersion relation

DW ω =
√
gk so ω(x, t) =

√
gk(x, t) =

gt

2x
(4.20)

Obviously, ω(x, t) is also a slowly varying function. Finally, the slowly vary-
ing amplitude is obtained by substituting k(x, t) into (4.17).

If all these things vary slowly, what is it that changes rapidly? The
answer, of course, is η(x, t) itself; it changes by 100% in each wavelength and
period.

How do we understand the form (4.17) taken by the slowly varying am-
plitude? What is it telling us? Imagine that you and a friend each have
speed boats, and you decide to play a little game with this slowly varying
wavetrain. Each of you picks a fixed value of wavenumber, and each of you
decides to drive your boat at just the right speed to always observe your
chosen wavenumber. If you choose the wavenumber k1, then the location of
your boat must satisfy ω′(k1) = x/t. In other words, you must drive your
boat at the group velocity corresponding to k1. If your friend chooses the
value k2, she must drive her boat at the group velocity ω′(k2) corresponding
to k2. We suppose that k2 < k1; your friend has decided to follow a longer
wavelength than yours.

Driving these boats will take some skill. You can’t be fooled into following
your wavenumber by keeping up with crests and troughs. If you do that, you
will notice that the wavelength you observe will gradually get longer. You
will have left your assigned wavenumber far behind. To keep pace with your
assigned wavenumber, you must drive your boat at half the speed of the
crests and troughs, because in deep water the group velocity is half the
phase velocity. Up ahead, your friend must do the same for her assigned
wavenumber k2. But since k2 < k1, her boat will move faster than yours.
The two boats gradually draw apart.

If energy really moves at the group velocity, then the total amount of
energy between the two boats must always be the same. From the previous
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chapter we know that the energy per unit horizontal distance is proportional
to the square of the slowly varying wave amplitude. Therefore, if energy
moves at the group velocity, it must be true that∫ x2(t)

x1(t)

dx ASV (x, t)2 = constant (4.21)

where x1(t) is the location of your boat, and x2(t) is the location of your
friend’s boat. Suppose that the difference between k1 and k2 is very small.
Then the difference between x1(t) and x2(t) is also very small, and (4.21)
becomes

(x2(t)− x1(t))ASV
2 = (ω′(k2)− ω′(k1))tASV

2 = constant (4.22)

where ω′(k2) − ω′(k1) is the difference in the boat speeds. If the difference
between k1 and k2 is very small, then

ω′(k2)− ω′(k1) ≈ ω′′(k1)(k2 − k1) (4.23)

Thus (4.22) implies that

ASV
2 ∝ 1

t|ω′′(k1)|
(4.24)

which agrees with (4.17) and provides an explanation for it. The square of the
slowly varying amplitude—the energy density—is inversely proportional to
the separation between the two boats, and it decreases as the boats diverge.
The energy per unit distance decreases because the same amount of energy
is spread over a wider area.

Our calculation shows why, if you are surfer, it is better to be far away
from an intense, wave-producing storm than close to it. If the storm were
just over the horizon, the waves reaching you could not yet have dispersed.
You would be seeing a superposition of all the wavelengths produced by the
storm. The surf would be a jumble. In the case of a distant storm, you see
only the wavelength whose group velocity matches your location and time.
Even if the storm covers a wide area or lasts for a significant time, you
will still see a single wavetrain if the distance between you and the storm is
sufficiently great.

If the situation is more complicated, our solution still has value, because
Postulate #2 says that waves superpose. For example, suppose there are
two storms, well separated from one another, but both very far away. Then
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the sea state at your location will be a superposition of two slowly varying
wavetrains, each determined by its distance in space and time from its source.
These two wavetrains will interfere, just like the two waves traveling in one
direction that we considered in chapter 2. The result could be a series of
wave groups—sets—like those described in chapter 2. The sets move at the
average group velocity of the two waves.

If you are beginning to get the idea that group velocity is all-important,
then you are absorbing one of the central ideas of this course. In dispersive
waves like DW, the group velocity is the key concept, and it is much more
important than the phase velocity. In nondispersive waves like SW, the group
velocity and the phase velocity are the same, so there is no need to introduce
the concept of group velocity. In nondispersive systems the phase velocity
assumes great importance. For example, the solution (3.32) involves the
phase velocity.

The two types of waves most frequently encountered in engineering and
physics courses are electromagnetic waves and acoustic waves. Both of these
are, to good approximation, nondispersive waves. Electromagnetic waves are
exactly nondispersive in vacuum, but become slightly dispersive in material
media. The phenomenon of chromatic aberration in optics is one manifes-
tation of the slight dispersion of electromagnetic waves in glass. However,
dispersive effects in electromagnetism and acoustics are usually sufficiently
small that the concept of group velocity isn’t invoked. This explains why you
may never have heard of it, even if you have studied these waves. In water
waves, group velocity becomes the key concept. There is no way to avoid it.

The mathematical techniques for dealing with these two classes of waves—
dispersive and nondispersive—differ greatly. For dispersive waves like DW,
the primary techniques are Fourier analysis and the superposition of waves—
the very techniques you have begun to learn. Of course these methods also
work—as a special case—for nondispersive waves like SW. But for nondisper-
sive waves there are, in addition, very powerful and specialized mathematical
methods that apply only to nondispersive waves. These specialized methods
are useful for studying shocks, which occur commonly in nondispersive sys-
tems. (The SW analog of the shock is the bore, which we will discuss in
chapter 10; breaking ocean waves often turn into turbulent bores.) However,
the specialized methods, besides being limited to nondispersive waves, are
mathematically rather advanced, and are somewhat beyond our scope.
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Let’s rewrite (4.21) in a slightly different form, as∫ x2(t)

x1(t)

E(x, t) dx = constant (4.25)

where E(x, t) is the average wave energy per unit area. The time derivative
of (4.25) is

0 =
d

dt

∫ x2(t)

x1(t)

E(x, t) dx

=

∫ x2(t)

x1(t)

∂

∂t
E(x, t) dx+ E(x2, t)

dx2

dt
− E(x1, t)

dx1

dt

=

∫ x2(t)

x1(t)

∂

∂t
E(x, t) dx+ E(x2, t)cg(x2, t)− E(x1, t)cg(x1, t) (4.26)

because the speed boats are moving at the group velocity. The last line can
be written in the equivalent form

0 =

∫ x2

x1

∂

∂t
E(x, t) dx+ F (x2, t)− F (x1, t) (4.27)

where F (x, t) = cg(x, t)E(x, t) is the energy flux toward positive x. This can
be written yet again as

0 =

∫ x2

x1

[
∂

∂t
E(x, t) +

∂

∂x
F (x, t)

]
dx (4.28)

Finally, since (4.28) must hold for every value of x1 and x2—that is, for every
pair of constant wavenumbers selected by the two speed boat drivers—it must
be true that

∂

∂t
E(x, t) +

∂

∂x
F (x, t) = 0 (4.29)

everywhere. Equivalently,

∂

∂t
E +

∂

∂x
(cgE) = 0 (4.30)

We have seen this equation before!
Our calculation has been for the case of one space dimension, but the

oceans surface is two-dimensional. In two dimensions, our calculation corre-
sponds to an infinitely long storm located along the y-axis. It is more realistic
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Figure 4.2: The area of the annulus increases because both r1 and (r2 − r1)
increase.

to regard the storm as a disturbance located near the point (x, y) = (0, 0)
at time t = 0. In this more realistic case, the waves spread away from the
storm in a pattern of concentric circles. As in the one-dimensional case, en-
ergy moves at the group velocity, but in two dimensions the slowly varying
amplitude is given by

ASV
2 ∝ 1

t2|ω′(k1)ω′′(k1)|
(4.31)

instead of (4.24). To understand (4.31), we must use our speed boats again.
The first speed boat driver, traveling at just the right speed to always observe
wavenumber k1, must stay at radius r1 = ω′(k1)t measured from the center
of the storm (figure 4.2). The second speed boat driver, always observing k2,
must stay at r2 = ω′(k2)t. The energy in the annulus between r1 and r2 is
conserved. Hence, assuming that the difference between r1 and r2 is small,

constant = 2πr1(r2 − r1)ASV
2 = 2π(ω′(k1)t)(|ω′′(k1)|t∆k)ASV

2 (4.32)

where ∆k = |k2 − k1|. In two dimensions, the wave amplitude decreases
faster than in one dimension because the same amount of energy is spread
over an even larger area than in one dimension. Part of the enlargement is
caused by the dispersion of waves (increasing separation of the speed boats)
in the radial direction of wave propagation, just as in the one-dimensional
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case. However, now there is an additional enlargement caused by the fact
that the circles themselves get larger.

We should admit that in talking about wave energy we have gone some-
what beyond the authority of Postulates #1 and #2. We have introduced the
additional assumption that the average energy density—the energy per unit
area of ocean surface—is proportional to the square of the wave amplitude.
In a chapter 2 we tried to justify this assumption with an incomplete calcu-
lation of the kinetic and potential energies, but we were mainly relying upon
what you already know about energy. Postulates #1 and #2 say nothing at
all about energy! When we eventually get around to justifying Postulates
#1 and #2 by considering the general equations for a fluid, we will need to
verify energy conservation as well.



Chapter 5

Wave measurement and
prediction

In chapter 4 we considered the waves created by a highly idealized storm:
a point disturbance in space and time, with a symmetrical shape that was
designed to make our calculation as easy as possible. Although this type of
calculation can teach us a lot about the basic physics of ocean waves, the
real ocean is a much more complicated place. In this lecture we acknowledge
that complexity by discussing the methods by which real ocean waves are
measured and predicted.

If simple calculations could explain everything, there would be no need for
measurements at all. To the contrary, oceanography is an empirical science
in which the measurements always guide the theory. But measurements
by themselves can only tell you what has already happened. For anyone
living or working near the ocean, accurate predictions of wave height, at
least several days ahead, are vitally important. These predictions rely on
both measurements and theory. How are they made?

When talking about ocean waves, oceanographers often refer to the energy
spectrum S(k,x, t), defined as the amount of energy in the wave with wave
vector k = (k, l) at the location x = (x, y) and the time t. More precisely,∫ k2

k1

dk

∫ l2

l1

dl S(k, l, x, y, t) (5.1)

is the energy in all the waves with wavenumbers (k, l) in the range k1 < k < k2

and l1 < l < l2, at location x and time t. If we integrate S(k,x, t) over all

50
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wavenumbers, we get the total average energy, per unit mass, per unit area,∫ +∞

−∞

∫ +∞

−∞
dk S(k,x, t) = g〈η2〉 (5.2)

where 〈 〉 denotes the average in the vicinity of x; see (2.36). Thus S(k,x, t)
has the units L5T−2. Note that k, x, and t are independent variables. That
means that you get to choose the time, the place, and the wave vector k of the
waves you want to know about. The function S tells you how much energy
these waves have at the place and time you have chosen. Specifying k is the
same as specifying the direction µ of wave propagation and the frequency ω,
so the spectrum could also be taken as S(µ, ω,x, t).

The spectrum S(k,x, t) is somewhat similar to the energy density E(x, t)
considered in chapter 4. However, E(x, t) depended only on location and
time. This is because the wave field in chapter 4 consisted of only a single
wave vector at every location. That wave vector, k(x, y, t), differed from one
location to another, but there was never more than one k present at any
location. In defining the spectrum, we are admitting that the real world is
more complicated; waves with every wavelength and direction can be present
simultaneously at the same place. S(k,x, t) tells us which ones have the most
energy.

How is the spectrum calculated? We cannot go into details (which become
rather technical), but the spectrum is calculated in much the same way as the
wave amplitudes A(k) and B(k) in chapter 3. In fact, the one-dimensional
spectrum is proportional to A(k)2+B(k)2, the sum of the squares of the wave
amplitudes. The two-dimensional spectrum is proportional to A(k)2 +B(k)2.
To compute A(k) and B(k), we use a formula similar to, but subtly different
from, (3.14). The subtle difference is that the integration limits can no
longer be infinite, because we are calculating the spectrum near the specified
location x, and if we use values of η(x′, t) with x′ far from x, then we are
confusing the energy near x′ with the energy near x. The formula (3.14) gets
modified to avoid this.

There are other kinds of spectra, besides S(k,x, t). The spectrum S(κ,x, t)
measures the energy in all the waves with wavenumber magnitude κ = |k|.
The frequency spectrum S(ω,x, t) measures the energy in all the waves with
frequency ω. Both S(κ,x, t) and S(ω,x, t) contain less information than
S(k,x, t); neither S(κ,x, t) nor S(ω,x, t) contains any information about
the direction in which the waves are propagating. However, even S(k,x, t)
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does not provide a complete description of the wave field, because it does not
keep track of the phase differences between the waves. In summary, knowl-
edge of η(x, t) is sufficient to calculate any of these spectra, but none of the
spectra contain enough information to reconstruct η(x, t) exactly. This is
the main criticism aimed at spectral analysis and at prediction methods that
deal only with the spectrum.

You can apply spectral analysis to any quantity η(x, t); you need not
even be talking about waves. But if η(x, t) is the sea surface elevation, and
if you are dealing with linear, deep-water waves, then the wavenumber and
frequency are related by the dispersion relation,

DW ω =
√
gκ (5.3)

and this, in turn, provides a means of relating S(κ,x, t) and S(ω,x, t). Since

DW

∫ κ2

κ1

dκ S(κ,x, t) =

∫ √gκ2
√
gκ1

dω S(ω,x, t) (5.4)

for every κ1 and κ2, it must be true that

DW S(κ,x, t) = S(ω,x, t)
dω

dκ
=

1

2

√
g

κ
S(ω,x, t) (5.5)

But how do we measure η(x, t)?
In situ measurements are those in which the measuring device is located

near the point of measurement. A simple in situ device consists of a pair of
uninsulated vertical wires extending through the sea surface, with a voltage
difference applied between the wires. Since seawater conducts electricity, the
current flowing from one wire to the other is proportional to η(x, t). A similar
device uses a single insulated wire and measures the change in capacitance of
the wire. Such wire devices are mainly useful in shallow water, where the sea
bottom offers a stable support. Other shallow-water wave-measuring devices
include pressure sensors, which estimate the sea surface elevation from mea-
surements of the fluid pressure near the sea bottom. In its vertical position,
the Scripps research vessel FLIP provides a stable platform in deep water.
However, most wave measurements in deep water are made by unattended,
moored buoys. Heave-pitch-roll buoys (such as the Waverider Buoy) contain
accelerometers that measure the acceleration of the water in three directions.
The measured accelerations are radioed to shore, via satellite if necessary,
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and converted into estimates of the wave energy spectrum. Although in situ
measurements like those from buoys are very accurate, they have a relatively
small coverage. They only measure wave conditions near the device itself.
Accurate wave prediction requires that we keep track of S(k,x, t) over the
entire world ocean. Only satellites can do this.

Remote sensing of the ocean surface by satellites has been possible for
about 30 years. Two types of instruments measure ocean waves. Altimeters
determine the distance between the satellite and the ocean surface by mea-
suring the time required for a radar pulse to bounce off the sea surface and
return to the satellite. The time difference between the pulses that reflect
from wave crests and those that reflect from wave troughs provides a rough
measure of total wave energy. This measure is usually converted to signifi-
cant wave height Hs, defined as the average height of the 33% largest waves
(or something similar). This definition is chosen to make Hs agree with the
wave height (measured crest to trough) estimated by a typical human ob-
server. The JASON-1 satellite, launched in December 2001 by the U.S. and
France, carries a dual altimeter operating at frequencies of 5.3 GHz and 13.6
GHz, corresponding to wavelengths of 6 cm and 2 cm, respectively. JASON-1
transmits a one-meter-long radar pulse, which measures sea surface elevation
to an accuracy of 2-3 cm, and can determine Hs to an accuracy of 5% or 25
cm (whichever is greater) as compared with buoy measurements. Each mea-
surement represents the average of Hs along about 10 km of the satellite’s
track. Considering that the average Hs exceeds 5 m in stormy latitudes, this
is good accuracy. Unfortunately, Hs is a single number, which tells us noth-
ing about how the wave energy is distributed among the various wavelengths
and directions.

The second type of satellite instrument used for measuring ocean waves
is the synthetic aperture radar or SAR, which transmits a radar wave of 3
to 25 cm wavelength at an oblique angle to the ocean surface. The satellite
measures the backscattered wave. The wave frequency is chosen for its ability
to penetrate the atmosphere. At frequencies lower than 1 GHz (wavelengths
longer than 25 cm) there is significant contamination from the cosmic mi-
crowave background and from microwave radiation emanating from the cen-
ter of the Milky Way galaxy. At frequencies larger than 10 GHz (wavelengths
shorter than 3 cm), atmospheric absorption becomes a problem. Since the
radar waves are transmitted at an angle between 20 and 50 degrees to the
ocean surface, the scattering is Bragg scattering, meaning that the radar
wave interacts with an ocean wave having the same 3-25 cm wavelength as
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the radar. Ocean waves with these wavelengths are in the gravity-capillary
range. Such waves are always present, but they have much less energy than
the longer ocean waves, which are therefore of greater interest. However,
it is possible to infer the size and direction of the longer waves by observ-
ing the modulation they impose on the capillary waves. For example, the
largest-amplitude capillary waves tend to occur on the forward side of swell
crests.

SAR measurements of ocean swell demand a field of view that is smaller
than the wavelength of the swell. Such a narrow beam would normally re-
quire an impractically large antenna on the satellite itself. For example, an
ordinary radar using a satellite antenna with typical 10 m width has a field
of view of about 10 km. This is much too large; the longest swells have
wavelengths of only a few hundred meters. To narrow the field of view, SAR
makes use of the satellite’s rapid motion along its track. Very roughly speak-
ing, measurements from slightly different locations along the track are treated
like the signal detected from the different elements of a large antenna. This
reduces the SAR’s field of view to about 25 m. Because of the directional
nature of the SAR signal, SARs provide information about the direction of
the waves, and can even be used to estimate S(k,x, t).

Ordinary, non-SAR radars offer an excellent means of measuring the wind
speed above the ocean. Because capillary-wave amplitudes are strongly corre-
lated with the local wind, these radars, usually called scatterometers, provide
accurate estimates of the wind velocity within a 10 km patch. By looking at
the same patch of ocean from several directions, scatterometers can measure
both wind speed and direction to an accuracy of about 10%.

Of course, even the best measurements cannot tell us what the waves
will be like three days from now. Oceanographers predict the future wave
spectrum S(k,x, t) by solving the spectral evolution equation

∂S

∂t
+

∂

∂x
(cgxS) +

∂

∂y
(cgyS) = Qwind +Qdiss +Qtransfer (5.6)

over the whole world ocean, using powerful computers. The left-hand side of
(5.6), in which

cg = (cgx, cgy) = (
∂ω

∂k
,
∂ω

∂l
) (5.7)

is the group velocity, contains the only terms that would be present if the
waves were linear, unforced, and undissipated—the only case considered in
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the previous chapters. The right-hand side of (5.6) contains the sources and
sinks of wave energy. For deep water waves,

DW ω =
√
gκ =

√
g(k2 + l2)1/2 (5.8)

and hence the group velocity is given by

DW cg =
1

2

√
g

κ
(
k

κ
,
l

κ
) (5.9)

where (k/κ, l/κ) is the unit vector in the direction of wave propagation.
The left-hand side of (5.6) resembles (4.30) and has a similar derivation.

However, (5.6) is not the most general prediction equation that could be
used. It neglects wave refraction and other effects of ocean currents. If ocean
currents are present, then the waves can exchange energy with the currents,
and the whole calculation is best reformulated in terms of the spectrum of a
quantity called wave action. The details of this are beyond our scope. For
the purposes of our discussion, (5.6) is accurate enough. In fact, our main
purpose here is a brief, qualitative discussion of the three source/sink terms
on the right-hand side of (5.6).

The first of these terms represents the energy put into the waves by the
wind. The strongest winds occur in the two belts of mid-latitude cyclonic
storms at about 50 degrees latitude in both hemispheres. The source of
the wind-energy in these storms is the potential energy created by the sun’s
unequal heating of the Earth’s surface. These storms are strongest in the
winter hemisphere. Thus the Southern Ocean (the area around Antarctica) is
the primary source of San Diego’s summer swell. Our winter swell originates
in the North Pacific, and is stronger because we are closer to the source.
Hurricanes, whose wind-energy comes from the latent heat created by the
evaporation of tropical waters, also generate large swell, but hurricanes are
relatively small contributors to the global wave budget.

The exact mechanism by which wind creates ocean waves remained a
mystery until the 1950’s. Then, in 1957, UCSD Professor John Miles pro-
posed a theory that is still considered to be the most successful. A complete
discussion of Miles’s theory requires a rather deep understanding of fluid me-
chanics. Put simply, Miles proposed that the wind flowing over an ocean
wave generates a corresponding wave in the air above the ocean. These two
waves conspire to draw energy out of the wind. By Miles’s calculation,

Qwind =
ρa
ρw
βω(

Ur
c

cos θ)2S(k,x, t) (5.10)
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where ρa is the mass density of the air in grams per cubic centimeter; ρw is the
mass density of the water; Ur is the average wind speed at a reference level
of 10 meters above the ocean surface; and θ is the angle between the wind
and the direction of wave propagation at the phase velocity c. The quantity
β is an order-one, dimensionless function of Ur/c that decreases rapidly as
Ur falls below c. This makes sense; the wind cannot do work on the wave
if the wave is traveling faster than the wind. Subsequent refinements of the
theory have proposed various forms for β.

Since the wind forcing (5.10) is proportional to S(k,x, t), it leads to ex-
ponential growth of the wave spectrum. On the other hand, if S(k,x, t) = 0,
then Qwind vanishes as well. Thus the Miles theory predicts wave growth
only if waves are already present. It cannot explain how waves first develop
in a calm sea. An alternative theory proposed by Owen Phillips fills the gap.
Phillips proposed that ocean waves first arise in response to random pressure
fluctuations in the atmosphere just above the sea surface. Because these
fluctuations are turbulent, they occur at every wavelength and frequency,
including those wavelengths and frequencies that match the dispersion rela-
tion for ocean waves. This causes the waves to grow, but at a rate that is
independent of S, and therefore linear—not exponential—in the time t. This
relatively slow growth is enough to get things started. Wave prediction mod-
els typically use a form of Qwind that incorporates both the Miles mechanism
and the Phillips mechanism.

Now, what about the next term, Qdiss? This represents the loss of wave
energy to dissipation. In the open ocean, the dominant mechanism of dissi-
pation is wave-breaking, i.e. white-capping. This mechanism is very poorly
understood, but a combination of crude physical reasoning and empiricism
leads to parameterizations like

Qdiss = −Cdissωκ8S(k,x, t)3 (5.11)

where Cdiss is a constant. Note that the size of (5.11) decreases rapidly as
the wavelength increases. Thus white-capping affects the shortest waves the
most.

The last term in (5.6) is neither a net source nor a net sink of wave energy.
Instead, Qtransfer represents the transfer of wave energy between waves with
different wavelengths; Qtransfer conserves energy overall. The energy transfer
represented by Qtransfer arises from the nonlinear terms in the equations of
fluid motion, and it does not occur in the approximate, linear dynamics
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Figure 5.1: Spreading of energy by nonlinear transfer, Qtransfer.

governed by Postulates #1 and #2. (All of this will become a little clearer
in chapter 8.) Qtransfer is better understood than Qdiss, but it takes a much
more complicated form. The complexity arises from the fact that wave energy
transfer takes place via resonant quartets of ocean waves. Because of this,
the exact expression for Qtransfer involves multiple integrals over wavenumber
space. The evaluation of Qtransfer is by far the most time-consuming step in
the solution of the wave prediction equation (5.6). Although the exact form
of Qtransfer is quite complicated, its net affect is easy to describe. Qtransfer

removes energy from those k that have lots of energy, and gives the energy
to other k that don’t have as much. That is, Qtransfer causes the spectrum
to spread out (figure 5.1).

We can understand how all this fits together by considering a special
case. Suppose that a storm covers the whole ocean, and that its intensity is
everywhere the same. Then S(k,x, t) = S(k, t) is everywhere the same and
is governed by

∂

∂t
S(k, t) = Qwind +Qdiss +Qtransfer (5.12)

Compare this to (5.6). As the storm continues, the waves build up, but Qdiss

increases faster than Qwind. Eventually, an equilibrium is reached in which
S(k, t) = Seq(k) and (5.12) reduces to

0 = Qwind +Qdiss +Qtransfer (5.13)

This equilibrium spectrum depends only on the wind strength. What does
it look like?

According to one idea, the equilibrium spectrum represents a saturated
state in which any further wave growth is rapidly cancelled by wave breaking.
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Wave breaking occurs when the acceleration of the fluid particles approaches
the gravitational acceleration g. Plausibly, then, the equilibrium frequency
spectrum Seq(ω), which has units L3T−1, should depend only on g (with units
LT−2) and ω (with units T−1). The only dimensionally consistent possibility
is

Seq(ω) = Cg3ω−5 (5.14)

where C is a dimensionless constant. By (5.5), this corresponds to the equi-
librium wavenumber spectrum,

Seq(κ) =
1

2
Cgκ−3 (5.15)

However, observations seem to favor a spectrum proportional to ω−4 over that
predicted by (5.14). Of course the spectrum does not extend to indefinitely
low ω and κ, because waves whose phase speed exceeds the wind speed would
tend to be retarded rather than pushed by the wind. Sustained winds of more
than 50 m/sec (about 100 miles per hour) are very unusual. In deep water, a
phase speed of 50 m/sec corresponds to a wavelength of 1500 m and a period
of 30 seconds. Wave spectra contain very little energy at longer periods and
wavelengths than these.

Beginning from a calm initial state, how does the saturation spectrum
develop? Observations show that the shortest waves grow fastest, quickly
reaching their saturation level. As the short waves saturate, they begin to
transfer some of their energy to longer waves. The peak in the spectrum
moves left, toward lower frequency. The spectral peak is higher than the
spectrum at that same frequency at a later time, suggesting that the longest
waves present at any particular time have an advantage over other wave-
lengths in capturing the energy of the wind. See figure 5.2.

In the more realistic case of a storm of finite size and duration, we must
solve the full equation (5.6) to determine the wave field outside the storm.
How is this done? Since computers can’t solve differential equations, (5.6) is
converted to a difference equation as follows. Imagine that the world ocean
is covered by a square mesh in which the meshpoints are separated by a
distance d. Let Snij(k) be the spectrum at the meshpoint (x, y) = (id, jd)
at time t = nτ , where τ is the time step. For the sake of simplicity, we
specialize to the one-dimensional case. A difference equation corresponding
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Figure 5.2: Growth of the energy spectrum with time.

to the one-dimensional form of (5.6) is

(Sn+1
i (k)− Sni (k))

τ
+

(cgS)ni+1 − (cgS)ni−1

2d
= (Qwind +Qdiss +Qtransfer)

n
i

(5.16)
If the spectrum is known at some initial time, then (5.16) may be used to
find it at the next time step. This process can be iterated as far into the
future as needed. The WAM model (acronym for WAve Model) is the best
known numerical model of this general type. It uses a mesh spacing d of
about 200 km, and a time step τ of about 20 minutes.

To compute Qwind we need to know the forecast winds, and these must
be computed from a global weather model similar in principle to (5.16). The
weather model uses the observed weather as its starting condition. Similarly,
(5.16) would seem to require the observed wave spectrum as its starting
condition. Fortunately, however, the computed wave spectrum adjusts so
rapidly to the right-hand side of (5.16) that the initial condition for (5.16) is
much less important than the initial condition for the weather model. The
solution to (5.16) is dominated by the wind, and errors in the wind forecast
seem to be the biggest source of error in wave predictions.

How well do the global wave forecast models work? Their accuracy com-
pared to open-ocean buoy observations is very impressive. But the global
models only predict the waves in deep water. They treat the coastlines as
perfectly absorbing boundaries. This is realistic; the amount of wave energy
reflected from natural shorelines is quite small. However, the precise way
in which waves shoal and break is of great importance, and it depends on
details of the local coastal bathymetry that could not possibly be considered
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in a global model.
Figure 5.3 is from the website of the SIO Coastal Data Information Pro-

gram (http://cdip.ucsd.edu). It shows the wave height on 7 December 2015
in the Southern California Bight, predicted by a model that incorporates lo-
cal bathymetry. This particular model uses the wave spectrum measured at
the Harvest Buoy off Point Conception—rather than the output of a global
prediction model—to prescribe the incoming swell. The model includes the
effects of wave diffraction and refraction by islands and bathymetry, but it
ignores the processes represented by the right-hand side of (5.6). The direc-
tional spectrum at the lower left of the figure shows 17-second waves with
significant wave height 15.5 ft arriving from the northwest. These waves were
generated by a storm in the North Pacific. The offshore islands throw wave
shadows that are gradually filled in by refraction. The waves reaching San
Diego pass between Catalina Island and San Clemente Island.

As waves begin to feel the ocean bottom very near the shore, their paths
are bent and focused by the variations in the mean ocean depthH(x, y). Once
again, accurate predictions require elaborate computer models. However,
relatively simple theoretical tools can explain much of what is seen. The
next chapter introduces those tools.
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Figure 5.3: Wave height and directional spectrum in the Southern California
Bight on December 7, 2015.



Chapter 6

Shoaling waves

In chapter 1, we introduced the idea of a basic wave,

η = A0 cos(k0x− ω0t) (6.1)

in which the amplitude, wavenumber, and frequency are constants. (Here,
the zero subscripts serve to emphasize that the quantity is a constant.) In
chapter 2, we saw how two basic waves could be combined to yield a wave

η = ASV (x, t) cos(k0x− ω0t) (6.2)

in which the wavenumber and frequency are constants but the amplitude
varies slowly. We used the subscript SV to distinguish the slowly varying
amplitude from the constant amplitudes of the basic waves. In chapter 3, we
saw how an infinite number of basic waves could be added together to give
a wavetrain,

η = ASV (x, t) cos(k(x, t)x− ω(x, t)t) (6.3)

in which the amplitude, wavenumber and frequency all vary slowly. In this
chapter we explore this idea further by considering a wavetrain of the general
form

η = A(x, t) cos θ(x, t) (6.4)

in which the wavenumber is defined as

k(x, t) =
∂θ

∂x
(6.5)

and the frequency is defined as

ω(x, t) = −∂θ
∂t

(6.6)

62
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In the case of the basic wave, θ(x, t) = k0x − ω0t, so that the wavenumber
and frequency are constants, but in the general case they are not.

We require that (6.4) describe a slowly varying wave. By this we mean
thatA(x, t), k(x, t), and ω(x, t) change very little over a wavelength 2π/k(x, t)
or wave period 2π/ω(x, t). Thus, for example, we want

∂k

∂x

2π

k
� k (6.7)

Written solely in terms of θ(x, t), this is

θxx � (θx)
2 (6.8)

so another way of saying this is that the second derivatives of θ(x, t) must be
much smaller than its first derivatives. Note that in (6.4) we have dropped
the subscript SV from the amplitude. It is no longer needed to prevent
confusion with the basic waves, because we will no longer be talking about
basic waves. Of course basic waves are still present underneath—an infinite
number of them, no less—but we will not refer to them explicitly.

Besides (6.8) and its analogues, we place one further restriction on θ(x, t),
namely, that it obey the same dispersion relation as the corresponding basic
wave. By Postulate #1, basic waves obey the dispersion relation

ω0 =
√
gk0 tanh(k0H0) (6.9)

We assume that the slowly varying wave obeys the same dispersion relation
with the constant things replaced by the corresponding slowly-varying things:

ω(x, t) =
√
gk(x, t) tanh(k(x, t)H(x, t)) (6.10)

(To be completely general we have even assumed that the ocean depth de-
pends on time.) The approximation (6.10) is reasonable, because the slowly
varying wave locally resembles a basic wave. Written in terms of θ(x, t),
(6.10) takes the form

−θt =
√
gθx tanh(θxH) (6.11)

As we shall see, the differential equation (6.11) determines the phase θ(x, t)
of the slowly varying wave. To determine the amplitude, we need an equation
for A(x, t). For this we use the previously derived result

E(x, t) =
1

2
gA2(x, t) (6.12)
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and the fact that

∂

∂t
E(x, t) +

∂

∂x
(cg(x, t)E(x, t)) = 0 (6.13)

where

cg =
∂ω

∂k

∣∣∣∣
H

(6.14)

is the slowly varying group velocity. Using the dispersion relation (6.10), we
find that

cg =
1

2

√
g

k tanh(kH)

(
tanh(kH) + kHsech2(kH)

)
(6.15)

where k = k(x, t) and H = H(x, t). Of course this expression simplifies
considerably in the deep-water,

DW cg(x, t) =
1

2

√
g

k(x, t)
(6.15a)

and shallow-water limits,

SW cg(x, t) =
√
gH(x, t) (6.15b)

We determine θ(x, t) and A(x, t) by solving (6.11) and (6.13) with the ap-
propriate boundary condition. The boundary condition we have in mind is a
swell wave approaching La Jolla Shores. The one-dimensional case we are ex-
amining is appropriate if the swell wave is normally incident, and if the ocean
depth has no long-shore (y) dependence. These conditions are quite unreal-
istic; we must eventually generalize our equations to two space dimensions.
However, certain pedagogical points are clearest in the one-dimensional case,
so we stick to it for a bit longer.

To emphasize the general nature of what we are doing, we write the
dispersion relation in the general form

ω0 = Ω(k0, H0) (6.16)

Then (6.10) becomes

ω(x, t) = Ω(k(x, t), H(x, t)) (6.17)
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and (6.11) becomes

−∂θ
∂t

= Ω

(
∂θ

∂x
,H(x, t)

)
(6.18)

If we are dealing with water waves, then Ω(s,H) =
√
gs tanh(sH). However,

by allowing Ω to be an arbitrary function, we obtain results that hold for
any type of wave. In the general case, H represents an arbitrary ‘medium
parameter’.

We could solve (6.18) by attacking it directly, but it is better to make use
of the definitions (6.5) and (6.6). By (6.5)

∂k

∂t
=

∂

∂t

∂θ

∂x
=

∂

∂x

∂θ

∂t
= −∂ω

∂x
(6.19)

and by (6.17) this is

∂k

∂t
= −∂Ω

∂k

∣∣∣∣
H

∂k

∂x
− ∂Ω

∂H

∣∣∣∣
k

∂H

∂x
(6.20)

Finally then, (
∂

∂t
+ cg

∂

∂x

)
k(x, t) = − ∂Ω

∂H

∣∣∣∣
k

∂H

∂x
(6.21)

The left-hand side of (6.21) is the time derivative of k measured by an ob-
server traveling at the group velocity cg. To see this, consider the wavenumber

kobs(t) = k(xobs(t), t) (6.22)

measured by the moving observer at arbitrary location xobs(t). By the chain
rule, its time derivative is

d

dt
kobs(t) =

∂k

∂x

dxobs(t)

dt
+
∂k

∂t
=
∂k

∂t
+ uobs

∂k

∂x
(6.23)

where uobs(t) is the velocity of the observer (aka speed boat driver). Accord-
ing to (6.21), in deep water, where ∂Ω/∂H = 0, an observer moving at the
group velocity observes no change in the wavenumber k. This agrees with
our calculation in chapter 4. In shallow water, the same observer sees the
change in k given by the right-hand side of (6.21). This change in k is called
refraction. The corresponding change in ω is

∂ω

∂t
=
∂Ω

∂k

∣∣∣∣
H

∂k

∂t
+

∂Ω

∂H

∣∣∣∣
k

∂H

∂t
= − ∂Ω

∂k

∣∣∣∣
H

∂ω

∂x
+

∂Ω

∂H

∣∣∣∣
k

∂H

∂t
(6.24)
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where we have used (6.19). Hence,(
∂

∂t
+ cg

∂

∂x

)
ω(x, t) =

∂Ω

∂H

∣∣∣∣
k

∂H

∂t
(6.25)

According to (6.25), an observer moving at the group velocity sees a change
in ω only if the medium H varies with time. The two fundamental equations
are (6.21) and (6.25). They describe how the slowly varying wavenumber
and frequency change as a function of the location and time. They cover
the general case in which the medium H(x, t) varies with both location and
time. However, in the specific problem we are considering, the ocean depth
H(x) does not depend on time.

We shall assume that the waves are steady. That is, we assume that the
wave conditions do not change at a fixed location. Under this assumption,

∂k

∂t
=
∂ω

∂t
=
∂E

∂t
= 0 (6.26)

The conditions (6.26) will be satisfied if the incoming swell has a constant k
in deep water. In this case of steady waves, the fundamental equations (6.21)
and (6.25) become

cg
∂

∂x
k(x) = − ∂Ω

∂H

∣∣∣∣
k

∂H

∂x
(6.27)

and

cg
∂

∂x
ω(x) = 0 (6.28)

It follows from (6.28) that ω is a constant equal to the frequency ω0 of the
incoming swell. You may recall that we used this fact in chapter 1. To get
the wavenumber k(x) we could solve (6.27) for the given beach profile H(x).
However, it is much easier to use the dispersion relation (6.17) in the form

ω0 = Ω(k(x), H(x)) (6.29)

That is, it is much easier to determine k(x) from

ω0 =
√
gk(x) tanh(k(x)H(x)) (6.30)

To find the wave energy density E(x), we integrate the steady form of (6.13),
namely

∂

∂x
(cg(x)E(x)) = 0 (6.31)
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to find that
cg(x)E(x) = cg0E0 (6.32)

is a constant equal to the energy flux of the incoming swell.
We have seen (6.30) before. We derived it as (1.21) in the first chapter,

with a lot less fuss. Similarly, we derived (6.32) as (2.44) in chapter 2. Why
now all the elaborate discussion? The answer is that the two-dimensional
shoaling problem is much harder than the one-dimensional problem, and it
is the one we must solve. Real beaches have a topography H(x, y) that
depends both on x and on the long-shore coordinate y. Similarly, real swell
is never exactly normal to the coastline. Although we may often regard the
swell in deep water as an incoming basic wave, its wavevector k always has
a long-shore component.

To discuss the two-dimensional problem, we must generalize our whole
discussion, starting with

η = A(x, y, t) cos θ(x, y, t) (6.33)

In two dimensions, the wavevector is defined as

k = (k, l) = (θx, θy) = ∇θ (6.34)

The frequency is defined, as before, by (6.6). Taking the time-derivative of
(6.34), we obtain the two-dimensional generalization of (6.19),

∂k

∂t
= −∇ω (6.35)

By the slowly varying dispersion relationship

ω = Ω(k, l,H) (6.36)

we have

∇ω =

(
∂Ω

∂k

∂k

∂x
+
∂Ω

∂l

∂l

∂x
+
∂Ω

∂H

∂H

∂x
,
∂Ω

∂k

∂k

∂y
+
∂Ω

∂l

∂l

∂y
+
∂Ω

∂H

∂H

∂y

)
=

(
∂Ω

∂k

∂k

∂x
+
∂Ω

∂l

∂k

∂y
+
∂Ω

∂H

∂H

∂x
,
∂Ω

∂k

∂l

∂x
+
∂Ω

∂l

∂l

∂y
+
∂Ω

∂H

∂H

∂y

)
=

(
cg · ∇k +

∂Ω

∂H

∂H

∂x
, cg · ∇l +

∂Ω

∂H

∂H

∂y

)
(6.37)
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where we have used the fact that

∂

∂x
l =

∂

∂x

∂θ

∂y
=

∂

∂y

∂θ

∂x
=

∂

∂y
k (6.38)

Thus the two components of (6.35) are(
∂

∂t
+ cg · ∇

)
k = − ∂Ω

∂H

∂H

∂x
(6.39)

and (
∂

∂t
+ cg · ∇

)
l = − ∂Ω

∂H

∂H

∂y
(6.40)

These are the general equations for refraction in two dimensions. To get
the two-dimensional generalization of (6.25), we take the time derivative of
(6.36),

∂ω

∂t
=
∂Ω

∂k

∂k

∂t
+
∂Ω

∂l

∂l

∂t
+
∂Ω

∂H

∂H

∂t

= −∂Ω

∂k

∂ω

∂x
− ∂Ω

∂l

∂ω

∂y
+
∂Ω

∂H

∂H

∂t
(6.41)

Thus, (
∂

∂t
+ cg · ∇

)
ω = +

∂Ω

∂H

∂H

∂t
(6.42)

Finally, we have the two-dimensional generalization of (6.13), namely

∂E

∂t
+∇ · (cgE) = 0 (6.43)

Equations (6.39), (6.40), (6.42) and (6.43) are the fundamental equations for
a slowly varying wavetrain in two dimensions. They must be solved for k, l,
ω and E.

The left-hand sides of (6.39), (6.40) and (6.42) are the rates of change
measured by an observer moving at the group velocity—in other words, an
observer whose coordinates obey

dx

dt
=
∂Ω

∂k

∣∣∣∣
H,l

,
dy

dt
=
∂Ω

∂l

∣∣∣∣
H,k

(6.44)
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Thus we may write (6.39), (6.40) and (6.42) as the combination of (6.44) and

dk

dt
= − ∂Ω

∂H

∣∣∣∣
k,l

∂H

∂x
,

dl

dt
= − ∂Ω

∂H

∣∣∣∣
k,l

∂H

∂y
,

dω

dt
=

∂Ω

∂H

∣∣∣∣
k,l

∂H

∂t
(6.45)

The combination (6.44, 6.45) are called the ray equations. To understand
them, it is best to think about speed boats again. Equations (6.44) tell us
that the speed boat must be driven at the local group velocity—the group
velocity obtained by substituting the local values of k(x, y, t), l(x, y, t) and
H(x, y, t) into the general expression for group velocity. We take H(x, y, t)
as given. (Of course, in the application we have in mind H(x, y) is the
time-independent average ocean depth.) The required values of k(x, y, t)
and l(x, y, t) are obtained by solving (6.45), in which the right-hand sides
represent the effects of refraction.

How exactly does this work? The speed boat driver starts in deep water,
where the values of k and l are the (approximately) constant values k0 and
l0 of the incoming swell. She drives her boat a short distance at the group
velocity corresponding to these values. As she drives, she uses (6.45) to
calculate the changes that are occurring in k and l. In deep water, no changes
occur, because ∂Ω/∂H = 0 in deep water. But as the boat enters shallow
water, refractive changes in k and l begin to occur. Therefore, the speed boat
operator must frequently re-compute her group velocity based on the updated
values of k and l. Each such re-computation demands a slight change in
course of the boat. The path followed by the boat is called a ray. Refraction
causes the rays to bend.

We can think of this process in a slightly different way, in which the boat
represents a point in the four-dimensional space with coordinates (x, y, k, l).
The boat moves at the four-dimensional velocity given by (6.44) and the first
two equations of (6.45). In many books, these four equations are written in
the form

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
(6.46)

where i = 1, 2. This form resembles what are called Hamilton’s equations in
mechanics. The analogy between Hamilton’s equations and the ray equations
was a great inspiration to Shrödinger. However, the form (6.46) is danger-
ously ambiguous, and we will always prefer the more explicit forms (6.44)
and (6.45).

The third equation of (6.45) is, in a sense, superfluous, because if we know
k(x, y, t) and l(x, y, t), we can always compute ω(x, y, t) from the dispersion
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relationship. However, in the case of interest to us, ∂H/∂t = 0, and this
third equation then tells us that dω/dt = 0; the frequency keeps the value
ω0 of the incoming swell.

If ∂H/∂t = 0, and if the amplitude, wavenumbers and frequency of the
incoming swell do not vary in time, then the wave field itself will be steady.
That is, the wavenumbers k(x, y) and l(x, y), and the wave energy E(x, y)
will not vary locally in time. The speed boat driver still observes a non-
vanishing dk/dt and dl/dt, but only because she herself is moving though a
wave field that varies with location. This is the situation we have in mind.
Of course, the incoming swell isn’t constant. It changes on a timescale of
hours. But this timescale is long compared to the time required for waves to
propagate from deep water to the beach. It is this separation of timescales
that justifies our approximation of a constant incoming swell.

Suppose that H = H(x), but that l0 6= 0; the bottom topography has no
long-shore variation, but the swell is approaching the coast at an angle. In
this case (6.45) tell us that both l and ω remain constant at their incoming
values. In this case, the easiest way to find k(x) is to solve the dispersion
relation in the form

ω0 = Ω (k(x), l0, H(x)) (6.47)

This is a problem we discussed briefly in chapter 1. The dispersion relation for
water waves dictates that k(x) increases as H(x) decreases. In the shallow-
water limit, we have

SW ω0 =
√
gH(x) (k2(x) + l20) (6.48)

For water waves in any depth, the group velocity points in the same direction
as the wavevector k = (k, l). (Show this!) Thus each ray satisfies the equation

dy

dx
=
cgy
cgx

=
l

k
=

l0
k(x)

(6.49)

We can solve for the rays by solving (6.49) with k(x) given by (6.47). How-
ever, without even touching a pencil, we can see that dy/dx must decrease
as k(x) increases. The rays turn toward the beach as they approach it. The
wavecrests, which are perpendicular to the rays, become more nearly parallel
to the beach.

Now let γ be the angle between the rays and the perpendicular to the
shoreline (figure 6.1). Then
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Figure 6.1: Refraction causes the rays to bend toward shore.

sin γ =
l

κ
(6.50)

where κ =
√
k2 + l2. The phase speed c = ω/κ. It then follows from (6.50)

that

sin γ =
l0
ω0

c, (6.51)

a result known as Snell’s law. According to (6.51), the decrease in phase
speed c(x) as waves enter shallow water must be accompanied by a decrease
in the angle γ between the direction of wave travel and the perpendicular to
the beach. The waves turn toward shallow water.

For the situation just considered, in which H = H(x), the rays are a
family of identical curves; they differ only by a constant displacement in the
y-direction. However, real bathymetry always has a long-shore variation,
H = H(x, y). In the case of Scripps Beach, this variation is extreme. As
shown in figure 6.2, deep canyons cut perpendicular to the shoreline offshore
of the Beach and Tennis Club, and north of Scripps pier.

In the case of two-dimensional bathymetry, no shortcut analogous to
(6.47) is possible. We must solve (6.44) and (6.45) to find the rays (x(t), y(t)),
and to find how the wavenumber (k(t), l(t)) varies along each ray. If we can
do this for enough rays, we will have a fairly complete picture of the wave
field. But unlike in the case H = H(x), every ray will be different. More
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Figure 6.2: The two branches of Scripps Canyon near La Jolla, California.

work is required!
How do we do this? Take a large bathymetric chart and draw a line

approximately parallel to the shore in deep water. At equal intervals along
this line, make little ×’s, not too far apart. Each × is the beginning point
for a ray. At each ×, k and l have the values determined by the incoming
swell. Now solve (6.44) and (6.45) to determine the path of each ray and
how the wavenumbers change along it. Perhaps it is easiest to think about
(6.44) and (6.45) in their equivalent vector forms,

dx

dt
= cg(k, H) (6.52)

and
dk

dt
= − ∂Ω

∂H
∇H (6.53)

Draw the line increment ∆x = cg(k, H)∆t using the starting values of k
and H. Update H to the new location, and update k with the increment
∆k = −(∂Ω/∂H)∆t∇H. Then repeat the process for another step. For
greater accuracy, reduce the size of ∆t. Of course, no one does this ‘by hand’
anymore; computers do all the work.

What does the solution actually look like? Remembering that cg has
the same direction as k at every location, and noting that the wavenumber
increments dictated by (6.53) are always in the direction of −∇H, that is,
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Figure 6.3: The energy flux between two rays is constant, hence the wave
height is greater at section B than at section A.

toward shallower water, we see that the rays always bend toward shallow wa-
ter. In deep water, the rays are parallel, corresponding to uniform incoming
swell, but as the waves begin to feel the bottom, refraction bends the rays
in the direction of most rapid shoaling. This means that rays are bent away
from the canyons near the B&T and north of Scripps pier. These same rays
converge—become closer together—in the area between the canyons.

Why do we care so much about rays? They are a handy way of calculating
k, but their real importance goes far beyond that. It lies in the energy
equation, (6.43), which, in the case of steady waves, becomes

∇ · (cgE) = 0 (6.54)

According to (6.54), the flux of energy is non-divergent. Consider the two
nearby rays (labeled 1 and 2) and two cross-sections (labeled A and B) in
figure 6.3. Apply the divergence theorem∫∫

dx ∇ · F =

∮
ds F · n (6.55)

to the area bounded by the rays and cross-sections. Since F = cgE is tangent
to the rays, only the cross sections contribute, and we conclude that∫

A

ds Ecg · n =

∫
B

ds Ecg · n (6.56)

The flux of energy between any two rays is a constant. Suppose, as in the case
H = H(x), that the two rays always stay the same distance apart. As the
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Figure 6.4: Wave refraction in Scripps Canyon.

rays enter shallow water, the group velocity decreases. The energy density
E must therefore increase, to keep the flux constant. We have discussed this
phenomenon several times before.

Now suppose that the two rays converge, as they actually do between
the two canyons at La Jolla Shores. The energy density E now increases
for an additional reason, besides the decrease in group velocity. As the rays
converge—as they become closer together—E must increase to compensate
the decrease in the distance between the rays. Thus, the energy flux diverted
from the canyon areas by refraction gets concentrated in the area between
the canyons. This is why the waves are low at the B&T, and why the surfing
is good a bit further north.

Figure 6.4 shows the rays at La Jolla Shores corresponding to incoming
swell with a period of 14 seconds. (This figure is from a 2007 paper by Magne
et al in the Journal of Geophysical Research, courtesy of co-author Tom
Herbers.) The figure shows how rays are refracted away from the two canyon
heads, always bending toward shallow water. Where the rays converge, the
wave energy is expected to be large. Where the rays diverge, the wave energy
is expected to be small. Can you see why small children should swim near
the B&T, and why the surfing is often good between the two canyon heads?
The right panel shows the observed and predicted wave heights at two buoy
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locations.
In overall summary, you can solve the ray equations to get the ray paths

and the variation of wavenumber along them. That tells you the wavelength
and the direction of the shoaling wave field. To get the wave amplitude,
you apply the principle that the energy flux between rays is a constant. Do
all of this for enough rays, and you have the complete, slowly-varying wave
field everywhere seaward of the breaker zone. Of course, all of this is based
upon linear—small amplitude—theory. No matter how carefully you do it,
errors increase as the amplitude of the shoaling waves increases. However,
experience shows that things work pretty well right up to the point of wave
breaking. That means that if you are willing to believe criteria like (2.46)—
which seems to work on gently sloping beaches—you can even use ray theory
to predict where the waves will break.

After that, all bets are off! Linear theory breaks down, and Postulates
#1 and #2 no longer apply. A more complete description of fluid mechanics
is required, and even with that more complete description, it turns out to
be very difficult to understand exactly what is going on. The science of the
surf zone is largely descriptive. To follow it as best we can, we need to invest
some time in a more complete development of fluid mechanics. But before we
do that, there is room for one more, unsurpassingly beautiful topic that lies
almost wholly within the realm of Postulates #1 and #2. It is the pattern
of waves generated by a steadily moving ship.



Chapter 7

Rogue waves and ship waves

In previous chapters we omitted the effects of ocean currents; we always
assumed that the waves propagate in an ocean whose average velocity van-
ishes. Suppose, instead, that ocean currents are present. Let U(x, y, t) be
the velocity of the current. We assume that U is horizontal, z-independent,
and slowly varying in x, y, and t. More precisely, U changes by a negligible
amount over the vertical decay-scale of the waves, and varies slowly, if at all,
on the horizontal scale of the waves. That is, U(x, y, t) changes by only a
small percentage in each wavelength or wave period.

If all these assumptions hold, then the waves ride on the current in the
same way that you ride on a bus. The current speed simply adds to the phase
speed. If the current flows in the same direction as the waves are propagating
(with respect to the water), then the waves appear to be moving faster than
normal to a stationary observer. All of this is summed up by the dispersion
relation,

ω = U · k + Ω(k, H) (7.1)

where k = (k, l) is the horizontal wavenumber; H is the ocean depth; and

Ω(k, H) =
√
gκ tanh(κH) (7.2)

with κ =
√
k2 + l2 as before. Now, however, Ω(k, H) is the relative frequency

—the frequency measured by an observer drifting with the current—while ω
is the frequency measured by a stationary observer. These two frequencies
differ by the Doppler shift U · k. If the waves are propagating in the same
direction as the current, then U·k > 0, and the stationary observer measures
a higher frequency than the observer drifting with the current. If U · k < 0,
the reverse is true.

76
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The results of chapter 6 generalize to the case in which ocean currents
are present. It is simply a matter of replacing Ω(k, H) by U · k + Ω(k, H).
The two components of the prescribed velocity field U(x, y, t) are treated as
‘medium parameters’ like H(x, y, t). The ray equations (6.44) generalize to

dx

dt
= U +

∂Ω

∂k

∣∣∣∣
H,l

,
dy

dt
= V +

∂Ω

∂l

∣∣∣∣
H,k

(7.3)

where U = (U, V ), and the refraction equations (6.45) generalize to

dk

dt
= − ∂Ω

∂H

∣∣∣∣
k,l

∂H

∂x
−k∂U

∂x
−l ∂V

∂x
,

dl

dt
= − ∂Ω

∂H

∣∣∣∣
k,l

∂H

∂y
−k∂U

∂y
−l ∂V

∂y
(7.4)

and
dω

dt
=

∂Ω

∂H

∣∣∣∣
k,l

∂H

∂t
+ k

∂U

∂t
+ l

∂V

∂t
(7.5)

In vector notation, (7.3) takes the form

dx

dt
= U + (cg)rel ≡ cg (7.6)

and (7.4) takes the form

dk

dt
= − ∂Ω

∂H
∇H − k∇U − l∇V (7.7)

Here (cg)rel is the relative group velocity—the group velocity relative to the
current—and ∇ ≡ (∂x, ∂y). Equations (7.6) and (7.7) generalize (6.52) and
(6.53). In deep water, (7.6) and (7.7) reduce to

DW
dx

dt
= U +

(
k

κ
,
l

κ

)
1

2

√
g

κ
(7.8)

and

DW
dk

dt
= −k∇U − l∇V (7.9)

In deep water, refraction occurs only if the current U varies with location.
The energy equation (6.43) also requires generalization; it becomes

∂

∂t

(
E

Ω

)
+∇ ·

(
cg
E

Ω

)
= 0 (7.10)
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The quotient E/Ω, called wave action, replaces the energy as the important
conserved quantity when ocean currents are present. We will not attempt to
derive (7.10), which is somewhat difficult.

In chapter 6 we used the ray equations as a means of mapping out a
slowly varying wavetrain, such as that which occurs when a basic swell wave
approaches the beach. Here we want to mention a completely different—and
equally useful—interpretation of (7.6) and (7.7). The ray equations (7.6-7)
describe the evolution of a wave packet with ‘carrier wavevector’ k(t) located
at x(t). According to (7.10), the action of the wave packet is conserved.

Refraction by ocean currents can cause the wave energy E to become
very large. In fact, this is one explanation for the very rare, but very large,
‘rogue waves’ that occasionally damage or destroy large ships. How might
this work? We consider a simple example in one horizontal dimension. Let

U(x) =

{
0, x < 0

−sx, x > 0
(7.11)

be the velocity of the current, where s is a positive constant. The water is
deep. A wave packet with wavenumber k0 > 0 propagates toward positive x
from the direction of x = −∞. On x < 0 its wavenumber remains constant,
and the wavepacket moves at the constant speed 1

2

√
g/k0. However, as soon

as it passes x = 0, the wavepacket’s location and wavenumber are determined
by the ray equations (7.8-9) in the form

dx

dt
= U +

∂Ω

∂k
= −sx+

1

2

√
g

k
(7.12)

and
dk

dt
= −k∂U

∂x
= sk (7.13)

If we let t = 0 correspond to the time at which the wavepacket passes x = 0,
then (7.13) tells us that

k(t) = k0e
st (7.14)

The wavenumber grows exponentially in time; the wavelength gets shorter
as the wavepacket is ‘squeezed’ by the increasingly strong, adverse current.
What happens to the wavepacket’s location? Substituting (7.14) into (7.12),
we obtain

dx

dt
+ sx =

1

2

√
g

k0

e−st/2 (7.15)



Salmon: Introduction to Ocean Waves 79

which must be solved for x(t). To do this, we note that (7.15) can be written
in the form

e−st
d

dt

(
estx

)
=

1

2

√
g

k0

e−st/2 (7.16)

or,
d

dt

(
estx

)
=

1

2

√
g

k0

est/2 (7.17)

which can be directly integrated. Choosing the integration constant so that
x = 0 at t = 0, we obtain

x(t) =
1

s

√
g

k0

(
e−st/2 − e−st

)
(7.18)

for the location of the wavepacket. The wavepacket reaches its furthest pen-
etration toward positive x at the moment when dx/dt = 0. As you can
easily show, this occurs at the time t = ln 4/s. At this time, k = 4k0; the
wavelength has been squeezed to one fourth its original value. Thereafter
the wavepacket is swept backward by the current, approaching, but never
reaching, the point x = 0. All the while, its wavenumber continues to grow
exponentially, according to (7.14).

The physical interpretation of this solution is as follows. The continual,
exponential growth of the wavenumber causes the relative group velocity—
the velocity of the wave packet with respect to the water—to continually
decrease until it is overpowered by the oncoming current. Thereafter, the
wavepacket is carried backward by the current. The wavepacket never stops
fighting the current, but it is an increasingly ineffective fighter, because its
relative group velocity just keeps on decreasing.

More interesting than the location of the wavepacket is what happens to
its energy. The relative frequency Ω =

√
gk of the wavepacket grows expo-

nentially in time, because the wavenumber k grows exponentially in time.
However, the wave action E/Ω is conserved. This is only possible if E too
grows exponentially. The wavepacket gradually acquires an infinite energy.
Of course this is only an indication of what really happens. Linear theory—
based on small-amplitude waves—breaks down long before the waves get very
large. Nevertheless, we have a definite prediction that waves encountering
an adverse current increase in size. Where does all this wave energy come
from? It comes from the current itself. Refraction by currents causes waves
to grow by transferring energy from the ocean current to the wave.
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The example we have worked out is a very simple one. The two-dimensional
case offers many more possibilities. For example, in two dimensions ocean
currents can cause rays to converge, thereby focusing wave energy. However,
some people think that rogue waves have nothing to do with ocean currents
at all, because giant waves sometimes occur where currents are small. In-
stead, they talk about ‘nonlinear self-focusing of waves.’ (If you know what
that means, you know too much to be taking this course.) Nevertheless, there
is one place where currents are strong candidates for creating rogue waves.
The Agulhas Current flows east to west around the southern tip of Africa.
There it encounters very strong westerly winds that generate waves moving
in the opposite direction. Dozens of oil tankers have been damaged by giant
waves in this area. Elsewhere, measurements from ships, oil platforms, and
now satellite SARs show that 100-foot waves are regular if uncommon occur-
rences. By one estimate, about 10 such waves are present somewhere in the
world ocean at any one time.

From waves that are rarely observed, we now turn to waves that are
seen all the time. We use the theory of slowly varying waves to explain the
beautiful but rather complex pattern of waves that occur in the wake of a
steadily moving ship.

Let the ship move at constant speed U0 in the negative x-direction. We
shall view the situation in a reference frame that is moving with the ship.
In this reference frame, the ship is stationary at, say, (x, y) = (0, 0), and a
uniform current flows in the positive x-direction at speed U0. Assuming that
the ship is in deep water, the dispersion relation (7.1) becomes

ω = U0k +
√
gκ (7.19)

where, once again, κ =
√
k2 + l2. The corresponding group velocity is

cg =

(
∂ω

∂k
,
∂ω

∂l

)
=

(
U0 +

k

2κ

√
g

κ
,
l

2κ

√
g

κ

)
(7.20)

In this reference frame, the wave field is not merely steady; it is static. That
is, not only do the wavevector components k(x, y) and l(x, y) not depend on
time; the frequency ω vanishes everywhere. This is because, in linear theory,
the waves created by a time-independent forcing—the ship—must be time-
independent themselves. To an observer standing in the stern of the ship,
the wavy surface of the ocean appears to be a frozen surface.

Wait, you say. You have stood in the stern, and it is not like that. There
is plenty of sloshing around. However, much of the time-dependence you see
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is caused by waves that would be there even if the ship were not. Then, too,
the ship is not perfectly steady. It pitches and rolls in response to the waves.
Finally, there is the usual limitation of linear theory: it applies only to waves
with infinitesimal amplitude. Real ship waves can be large. They can even
be large enough to break. All of these non-static effects are most important
very close to the ship. This is where the waves are being generated, and
where their energy is most concentrated. But farther out in the wake, the
static pattern of waves locked to the ship is quite striking. It is this pattern
that we seek to explain with linear theory.

If the frequency vanishes, then (7.19) becomes

0 = U0k +

√
g (k2 + l2)1/2 (7.21)

which is one equation in the unknown, steady wavenumbers k(x, y) and
l(x, y). We need a second equation. The second equation may be deduced
from the fact that the ship itself is the source of all the wave energy in
its wake. From a distance, the ship looks like a point source of energy at
x = y = 0. This energy moves outward on rays given by

dx

dt
= U0 +

1

2

k

κ

√
g

κ
,

dy

dt
=

1

2

l

κ

√
g

κ
(7.22)

On each ray,
dk

dt
=
dl

dt
= 0 (7.23)

Because there is no refraction, the wavevector components are constant along
each ray. It follows that each ray is a straight line passing through the origin
with slope

y

x
=

1
2
l
κ

√
g
κ

U0 + 1
2
k
κ

√
g
κ

(7.24)

which can also be written in the simpler form

y

x
=

l

2κ
√

κ
g
U0 + k

(7.25)

For given, arbitrary x and y, we solve (7.21) and (7.25) for k(x, y) and l(x, y).
That gives the wave pattern in the wake of the ship.
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Figure 7.1: The angle α is the angle between the wavevector k and the
direction in which the ship is moving.

To solve these equations, substitute (7.21) into (7.25) to obtain

y

x
=

lk

−2κ2 + k2
(7.26)

Let
k ≡ (k, l) = κ(− cosα, sinα) (7.27)

where α is the angle between k and the direction in which the ship is moving
(figure 7.1). Then (7.26) becomes an equation in α alone, namely

y

x
=

sinα cosα

2− cos2 α
(7.28)

Using the trigonometric identity cos2 α = 1/(1 + tan2 α), we re-write this as

y

x
=

tanα

1 + 2 tan2 α
(7.29)

Given x and y, we first find α as the solution to (7.29). Then we find κ from

κ =
g

U0
2 cos2 α

(7.30)

which follows from (7.21). Then k is given by (7.27).
It is best to regard the right-hand side of (7.29) as a function of tanα

(figure 7.2). The range of α is from 0 to π/2. That is, the x-component of
k must be negative; only then does the wave point against the current; only
then can the two terms in (7.21) balance. It follows that the range of tanα is
from 0 to ∞. In that range, the right-hand side of (7.29) increases from 0 to
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Figure 7.2: The ratio y/x as a function of tanα.

a maximum at tanα = 1/
√

2, and then asymptotes to 0 as tanα approaches
∞. At the maximum,

y

x
=

1

2
√

2
= tan(19.5o) (7.31)

For greater y/x than this, (7.29) has no solution. Thus the ship’s wake lies
entirely within a wedge with angle 2 × 19.5o = 39o, regardless of the ship’s
speed. Outside this wedge—that is, for y/x greater than (7.31)—the sea
surface is undisturbed. See figure 7.3.

At the edge of the wake, (7.29) has the single solution α = tan−1(1/
√

2) =
35.3o. By (7.30) this corresponds to

κ =
g

U0
2(2/3)

(7.32)

Thus, at the edge of the wake, the wavenumbers are

(k, l) =
3g

2U0
2

(
−
√

2

3
,

1√
2

)
(7.33)

If you water-ski, this is the wave you hop over to get outside the wake.
For all y/x less than the maximum, (7.29) has two solutions. Thus, at

any point within the wake there are two distinct waves present. At y = 0,
directly behind the ship, the two solutions are α = 0 and α = π/2. The
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Figure 7.3: Two waves are present at all locations within the wake.

solution α = 0 corresponds to a wavevector pointing directly at the ship. By
(7.30) this wave has wavelength

λmax =
2π

κmin
=

2πU0
2

g
(7.34)

which is the longest wavelength present anywhere in the wake. The solution
α = π/2 corresponds to a wavevector pointing at right angles to the line
y = 0, and to an infinitesimal wavelength. As y/x increases, the small-α
solution and the large-α solutions converge to the single solution (7.33) at
the edge of the wake.

We have found k(x, y); we know the wavevectors everywhere inside the
wake. But what do the waves really look like? Recall the general expression
for the slowly varying wavetrain,

η = A(x, y) cos θ(x, y) (7.35)

A wave crest corresponds to a curve along which

θ(x, y) = 2πn, n = 0, 1, 2, . . . (7.36)

A wave trough corresponds to

θ(x, y) = π + 2πn (7.37)
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Thus, to get a picture of the wake, we must determine the lines of constant
θ. We must use our knowledge of k = ∂θ/∂x and l = ∂θ/∂y to find θ(x, y).
Now,

θ(x, y)− θ(x0, y0) =

∫ x

x0

∇θ · dx =

∫ x

x0

k · dx (7.38)

where the integral is along any path between x0 and x. We arbitrarily
choose x0 = (0, 0). Although we can choose any path between (0, 0) and
the arbitrary point (x, y) to evaluate the last integral in (7.38), it is most
convenient to use the straight line of constant slope y/x, because, as we
already know, both components of k are constant along such a line. Thus
(7.38) becomes

θ(x, y)− θ(x0, y0) = kx+ ly (7.39)

But since (7.39) holds along every such line, we may write

θ(x, y)− θ(x0, y0) = k(x, y)x+ l(x, y)y (7.40)

where k(x, y) and l(x, y) are the previously determined wavevector compo-
nents. Since k(x, y) and l(x, y) as known functions, we may regard (7.40) as
an equation for the relative phase, ∆θ ≡ θ(x, y)− θ(x0, y0), as a function of
x and y. Alternatively, we may regard

k(x, y)x+ l(x, y)y = ∆θ (7.41)

as the equation for a line of constant phase, where the right-hand side is a
constant. For given, constant ∆θ, (7.41) implicitly defines a line y(x) that is
locally parallel to wave crests.

What does such a line look like? Substituting (7.27) and (7.30) into (7.41)
yields

g

U0
2 cos2 α

(−x cosα + y sinα) = ∆θ (7.42)

But α is itself a function of x and y, implicitly determined by (7.30). Solving
(7.42) and (7.29), and simplifying a bit, we obtain the equation for our line
of constant phase in the parametric form

x = −∆θ U0
2

g
cosα(1 + sin2 α) (7.43a)

and

y = −∆θ U0
2

g
cos2 α sinα (7.43b)



Salmon: Introduction to Ocean Waves 86

Figure 7.4: The wave crests have the universal shape determined by eqns
(7.45).

As α runs through its range from 0 to π/2, the equations (7.43) trace out a
line locally parallel to wave crests. If we agree to measure x and y in units
of

−∆θ U0
2/g (7.44)

then (7.43) assume the universal form,

x = cosα(1 + sin2 α), y = cos2 α sinα (7.45)

The apparent sign of (7.44) is of no concern, because phase is always ar-
bitrary by ±2πn. Only the size of (7.44) has physical importance, and it
merely controls the distance between successive crests, greater for larger ship
speeds. The crests themselves have the universal shape (7.45). Set α = 0 in
(7.45) and you have put yourself directly behind the ship at (x, y) = (1, 0).
As α increases to tan−1(1/

√
2) you move outward, and slightly backward,

along the crest of the long-wavelength ‘trailing wave’, to the cusp at the edge
of the wake. See figure 7.4. Then, as α increases from tan−1(1/

√
2) to π/2,

you move rapidly toward the ship, along the crest of the short-wavelength
wave. The wave pattern reveals itself! The algebra is somewhat tedious, but
the underlying ideas are quite simple: Postulates #1 and #2, and the idea
of a slowly varying wavetrain.
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We have said nothing at all about the slowly varying amplitude A(x, y).
If only we knew its value in the ray tubes originating at the ship, we could
determine A(x, y) throughout the wake, following the same procedure as in
chapter 6. But this is a very hard problem! To solve it, naval architects use
powerful computers to solve the general equations governing the ship and
the surrounding fluid—equations that we have not yet even discussed. The
problem is important because the energy in the waves generated by the ship
represents a sizable fraction of the energy produced by the ship’s engines.
For this reason, ship hulls are designed to minimize wave generation.

Although the complete problem is a difficult one, we can get some idea
about A(x, y) by using the following principle: Ships tend to generate waves
with wavelengths that are about the same size as the ship itself. Let L be
the length of the ship. We have seen that the longest waves in the wake
are the ‘trailing waves’—the waves with crests nearly perpendicular to the
direction of ship motion. According to (7.32) and (7.34), their wavelengths
vary between λmax = 2πU0

2/g directly behind the ship to 2λmax/3 at the
edge of the wake. Roughy speaking, then, these ‘trailing waves’ all have
wavelengths of order U0

2/g. In contrast, the other family of waves—those
with crests more nearly parallel to the ship track—have wavelengths shorter
than U0

2/g. In fact, their wavelengths approach zero in the region directly
behind the ship. It follows that if the ship’s length L is large compared to
U0

2/g, then it generates mainly ‘trailing waves’. If, on the other hand, L is
small compared to U0

2/g, then most of the wave energy is concentrated in
the short waves with crests more nearly parallel to the ship’s direction. If L
is much smaller than U0

2/g, then the most prominent waves are the waves
with crests that nearly coincide with the axis of the wake. We can say this
somewhat more succinctly by defining the Froude number,

Fr ≡ U0
2/gL (7.46)

If Fr � 1, then the ship mainly generates ‘trailing waves’ with crests nearly
perpendicular to the wake axis. A big, slow-moving tugboat would be a
good example of this. However, a short, fast speedboat with Fr � 1 mainly
generates the shorter waves with crests nearly parallel to the wake axis.

You can find lots of pictures of ship wakes. In most of them, the wake
is actually produced by a ship. However, in the remarkable satellite photo
shown in figure 7.5, the “ship wake” is produced by air flowing over a volcanic
island in the Indian Ocean. The island, located in the lower left of the
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Figure 7.5: The cloud pattern produced by wind flowing past a volcanic
island resembles our calculation of a ship wake.

photo, generates a wake of internal gravity waves in the atmosphere. In
these internal waves, clouds form where the air rises and clouds evaporate
where the air descends. Thus the cloud pattern in the photograph reveals the
pattern of vertical velocity in the atmosphere. In this photo the wind blows
from left to right. As the wind blows over the island, air is forced upward,
and its water vapor condenses into droplets. This explains the “cloud spot”
on the windward slope of the volcano. As the air descends on the leeward
slope, the cloud evaporates. But air, like water, has inertia. The updrafts
and downdrafts “overshoot”, generating a field of internal gravity waves. In
the far field, the island looks like a point source, just as in our calculation of
the ship wake.

The really surprising thing is this: Our calculation used the deep-water
dispersion relation for water waves. However, the physics of atmospheric
internal gravity waves is much more general and more complex. For one
thing, it depends upon the mean temperature profile of the atmosphere,
which varies from place to place and from time to time. Why, in this case,
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is the atmosphere responding to the island in the same way that the surface
of the ocean responds to a ship?

On this particular day, a thick layer of cold air must have been present at
the bottom of the atmosphere, just above the ocean surface. The waves in
the photo probably represent undulations in the upper boundary of this thick
layer of cold air. Without knowing the wind speed, the air temperature, and
the thickness of the cold-air layer, it is impossible to apply a quantitative test.
However, the angle of the wake in the photo is very close to that predicted
by our theory. Try measuring it yourself!



Chapter 8

Hydrodynamics and linear
theory

Up to now, we have used a fair amount of math and a very little physics.
Our physics has consisted of Postulates #1 and #2, and a rather innocent
assumption about wave energy, namely, that the energy was proportional
to the square of the wave amplitude. In the previous chapter we used the
conservation of wave action; you were asked to take that on faith.

Without more physics, we can’t go much further. We need the general
equations of fluid mechanics. In this chapter, we derive those equations,
and we use them to justify Postulates #1 and #2. In chapters 9 and 10 we
investigate some phenomena that Postulates #1 and #2 can’t explain.

Fluid mechanics is a field theory, like electrodynamics. In electrodynam-
ics, the fundamental fields are the electric field E(x, y, z, t) and the mag-
netic field B(x, y, z, t). The fields depend continuously on location and time.
The field equations are Maxwell’s equations. Maxwell’s equations require no
derivation. Within the context of classical physics, they represent fundamen-
tal physical law.

In fluid dynamics, the fields include the mass density ρ(x, y, z, t), the
pressure p(x, y, z, t), and the fluid velocity v(x, y, z, t). However, the fluid
equations do not represent fundamental physical law in the same way that
Maxwell’s equations do. The fluid equations are merely an approximation to
a deeper reality. That deeper reality is—again within the context of classical
physics—molecules whizzing around and occasionally colliding, all the while
obeying F = ma. The mass density ρ(x, y, z, t) is simply the average mass
per unit volume of all the molecules in the vicinity of (x, y, z) at time t. It

90
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is a smooth function of its arguments solely because of the way it is defined.
Similar remarks apply to the other fluid fields.

The absolutely best way to derive the fluid equations is to average over
the equations governing the molecules, principally F = ma. That turns out
to be a big project. Instead, most fluids books derive the fluid equations by
pretending that the fluid is a continuum—a continuous distribution of mass
in space—and imagining how such a thing would behave if it actually existed.
We will do that too.

Our derivation of the fluid equations leans heavily on the idea of a con-
servation law. This is a concept that we have already encountered several
times. Let n be the amount of X per unit volume. If the total amount of X
is conserved, then n must obey an equation of the form

∂n

∂t
+∇ · F = 0 (8.1)

where F = (Fx, Fy, Fz) is the flux of X. Equivalently,

∂n

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0 (8.2)

If the X moves at the velocity q, then F = nq, and (8.1) takes the form

∂n

∂t
+∇ · (nq) = 0 (8.3)

In previous chapters, n was the wave energy E, which travels at the group
velocity; hence q = cg.

The density ρ is the amount of mass per unit volume. The mass moves
at the velocity v = (u, v, w) of the fluid. Therefore, the conservation law for
mass is

∂ρ

∂t
+∇ · (ρv) = 0 (8.4)

The momentum per unit volume is ρv = ρ(u, v, w). We expect a conservation
law for each of its components. We start by considering ρu, the x-component
of the momentum per unit volume. If the momentum were merely carried
around by the fluid in the same way as mass, then we would take n = ρu
and q = v to get

∂(ρu)

∂t
+∇ · (ρuv) = 0 WRONG (8.5)
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Equation (8.5) ignores the fact that forces cause the momentum to change.
Thus, instead of (8.5), we must write

∂(ρu)

∂t
+∇ · (ρuv) = fx RIGHT (8.6)

where f is the force per unit volume and fx is its x-component. In fluid
mechanics, there are several possible forces, but one is always present. That
is the pressure force, the force of the fluid on itself.

“Slice” the fluid at any angle. The fluid on each side of your slice is
pushing against the other side of the slice with a force per unit area equal to
the pressure p. The direction of the force is always normal to the slice. In
that sense the pressure is isotropic. By considering a small cubic volume of
fluid, we see that the pressure force per unit volume is f = −∇p. You can
remember the sign by remembering that the fluid is being pushed away from
where the pressure is high. Thus (8.6) becomes

∂(ρu)

∂t
+∇ · (ρuv) = −∂p

∂x
(8.7a)

Similarly, for the y-component of the momentum equation we have

∂(ρv)

∂t
+∇ · (ρvv) = −∂p

∂y
(8.7b)

The z-component—the vertical component—of the momentum equation con-
tains an additional term, the force per unit volume caused by gravity. In-
cluding it, we have

∂(ρw)

∂t
+∇ · (ρwv) = −∂p

∂z
− ρg (8.7c)

An important simplification occurs if the density is constant. The fluid equa-
tions (8.4) and (8.7) reduce to

∇ · v = o (8.8)

and

∂u

∂t
+ v · ∇u = −∂p

∂x
∂v

∂t
+ v · ∇v = −∂p

∂y
∂w

∂t
+ v · ∇w = −∂p

∂z
− g (8.9)
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where we have absorbed the constant density into the pressure. (New p
equals old p divided by constant ρ.) We can write (8.9) as a single vector
equation in the form

Dv

Dt
= −∇(p+ gz) (8.10)

where
D

Dt
≡ ∂

∂t
+ v · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(8.11)

The operator (8.11) is often called the advective derivative or the substan-
tial derivative. It is the time derivative measured by an observer moving
at the fluid velocity. Equations (8.8) and (8.10) are the equations of ideal
hydrodynamics. They represent 4 equations in the 4 unknowns p, u, v, and
w.

Hydrodynamics is the branch of fluid mechanics that deals with constant-
density fluids. The theory of water waves lies wholly within hydrodynamics.
The equations (8.8, 8.10) are called ideal because they omit viscosity, the
frictional force of the fluid rubbing against itself. If viscosity is included,
then (8.10) generalizes to

Dv

Dt
= −∇(p+ gz) + ν∇2v (8.12)

where ν is the viscosity coefficient (equal to about 0.01cm2sec−1 in water)
and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(8.13)

is the Laplacian operator. The combination (8.8) and (8.12) is called the
Navier-Stokes equations. However, since none of the phenomena we discuss
involve viscosity in an essential way, we shall use ideal hydrodynamics. Thus,
our fundamental equations are (8.8) and (8.10).

These equations take a simpler form if the velocity takes the special form

v = (u, v, w) = ∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
(8.14)

This really is a special form. In the general case, u(x, y, z, t), v(x, y, z, t),
and w(x, y, z, t) are three independent fields. However, under the assumption
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(8.14), all three components of velocity are determined by the single scalar
field φ(x, y, z, t). As consequences of (8.14) we have

∂u

∂y
=
∂v

∂x
,

∂u

∂z
=
∂w

∂x
,

∂v

∂z
=
∂w

∂y
(8.15)

These are special relations that are not satisfied by an arbitrary velocity
field v(x, y, z, t). Flow satisfying (8.14) is called potential flow ; φ is called
the velocity potential. Before we explain why the velocity should take the
special form (8.14), we show how much it simplifies our equations.

If the velocity field satisfies (8.14) then (8.8) reduces to Laplace’s equation

∇2φ = 0 (8.16)

and (8.9a) takes the form

∂

∂t

∂φ

∂x
+∇φ · ∇

(
∂φ

∂x

)
= −∂p

∂x
(8.17)

which is equivalent to

∂

∂t

∂φ

∂x
+∇φ · ∂

∂x
∇φ = −∂p

∂x
(8.18)

and to
∂

∂t

∂φ

∂x
+

∂

∂x

(
1

2
∇φ · ∇φ

)
= −∂p

∂x
(8.19)

and finally to
∂

∂x

(
∂φ

∂t
+

1

2
∇φ · ∇φ+ p

)
= 0 (8.20a)

From (8.9b) by similar steps we get

∂

∂y

(
∂φ

∂t
+

1

2
∇φ · ∇φ+ p

)
= 0 (8.20b)

and from (8.9c) we get

∂

∂z

(
∂φ

∂t
+

1

2
∇φ · ∇φ+ p+ gz

)
= 0 (8.20c)
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We may write (8.20) as a single equation,

∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ+ p+ gz

)
= 0 (8.21)

From (8.21) we conclude that

∂φ

∂t
+

1

2
∇φ · ∇φ+ p+ gz = C(t) (8.22)

where C(t) is a function only of time. This function turns out to be com-
pletely unnecessary. One way to see this is to note that we can absorb it into
the first term in (8.22) by replacing

φ→ φ+

∫
C(t) dt (8.23)

This replacement has no effect on the velocity (8.14). With this final simpli-
fication, the equations of ideal hydrodynamics become

∇2φ = 0 (8.24a)

and
∂φ

∂t
+

1

2
∇φ · ∇φ+ p+ gz = 0 (8.24b)

Equation (8.24b) is usually called the Bernoulli equation. Although much
simpler than (8.8) and (8.10), (8.24) are by no means easy to solve. A
principal difficulty is the quadratic term ∇φ · ∇φ in (8.24b).

Equations like (8.24b), which contain products of the dependent variables,
are said to be nonlinear. Nonlinear partial differential equations are usually
very difficult to solve. All of the mathematical methods we have used—
and almost all of the methods you will learn as undergraduates—apply only
to linear equations. There are few general methods for solving nonlinear
equations, and most of those involve severe approximations. Nonlinear equa-
tions are very challenging! Yet, without the nonlinearity in (8.24b), waves
would not steepen and break. Without the more complicated nonlinearity
in (8.10), fluid flow would never be turbulent. The nonlinear property of
the fluid equations is another property that sets them apart from Maxwell’s
equations. Maxwell’s equations are linear, hence their solutions are very
polite and well behaved.
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Figure 8.1: Geometry for the fundamental problem of water wave theory.

Now we pose the fundamental problem of water wave theory. We consider
a horizontally unbounded ocean with a flat bottom at z = −H0 and a free
surface at z = η(x, y, t) (figure 8.1). The fluid obeys the fundamental equa-
tions (8.24) plus boundary conditions at its top and bottom. The bottom
boundary condition is that

w =
∂φ

∂z
= 0 at z = −H0 (8.25)

because there can be no flow through the ocean bottom. At the top boundary
there are two boundary conditions. The kinematic boundary condition states
that fluid particles on the free surface must remain there,

D

Dt
(z − η(x, y, t)) = w − Dη

Dt
=
∂φ

∂z
− ∂η

∂t
−∇φ · ∇η = 0 at z = η(x, y, t)

(8.26)
The dynamic boundary condition states that the pressure must be continuous
across the free surface. Thus

p = pa at z = η(x, y, t) (8.27)

where pa is the pressure of the atmosphere. Condition (8.26) says that the
free surface must move at the same velocity as the water particles that are
on it; condition (8.27) forbids the pressure discontinuity that would result in
an infinite acceleration of the free surface.

Now we collect all our equations and their boundary conditions. The
equations are

∇2φ = 0 on −H0 < z < η(x, y, t) (8.28a)
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and

∂φ

∂t
+

1

2
∇φ · ∇φ+ p+ gz = 0 on −H0 < z < η(x, y, t) (8.28b)

and the boundary conditions are

∂φ

∂z
(x, y,−H0, t) = 0, (8.29a)

∂φ

∂z
(x, y, η(x, y, t), t)− ∂η

∂t
−∇φ(x, y, η(x, y, t), t) · ∇η(x, y, t) = 0, (8.29b)

and
p(x, y, η(x, y, t), t) = pa(x, y, t) (8.29c)

We have written the boundary conditions with full arguments to emphasize
how complicated there are. The boundary conditions (8.29b,c) involve the
unknowns φ and p evaluated at a location that depends on η. In other words,
you need to know η before you can solve the equations that tell you what it
is. Things can’t get much worse than this! This problem disappears if we
linearize (8.28) and (8.29) about the state of rest. But before we do this, we
need to say something more about (8.29c).

In (8.29c) pa is the atmospheric pressure at the free surface. Where do
you get that? Well you could solve for it, by extending the problem to include
the atmospheric flow. Then pa just becomes another unknown field. More
simply, you could specify pa(x, y, t), perhaps using some real measurements
of atmospheric pressure. Or, you could do what we are going to do and just
ignore pa. That would be a poor idea if your goal is to understand how waves
are generated; pa is the thing that generates the waves. But if your goal is
to study free waves, then you may be justified in ignoring pa. Setting pa = 0
corresponds to replacing the atmosphere by a vacuum. This is reasonable,
because the mass density of the atmosphere is about 1000 times less than
that of the ocean. To a first approximation, the ocean sees the atmosphere
as a vacuum.

The state of rest corresponds to φ = η = 0; the free surface is flat, and the
velocity field vanishes. Suppose that waves are present but very small. That
is, suppose that the solution to (8.28) and (8.29) represents a slight departure
from the state of rest. Then φ and η are very small, and in equations like
(8.28b), we may neglect terms proportional to the products of φ and η in
comparison to terms that contain only one factor of φ or η. This is because
small numbers get even smaller if you multiply them together.
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For example, consider the boundary condition (8.29b). To expose the
sizes, we perform a Taylor expansion of each term with respect to its third
argument. For example,

∂φ

∂z
(x, y, η(x, y, t), t) =

∂φ

∂z
(x, y, 0, t) +

∂2φ

∂z2
(x, y, 0, t)η(x, y, t) + · · ·

≈ ∂φ

∂z
(x, y, 0, t) (8.30)

because products of small terms are negligible compared to terms that are
linear in φ or η. Thus, the linear approximation to (8.29b) is

∂φ

∂z
(x, y, 0, t) =

∂η

∂t
(x, y, t) (8.31)

As for (8.29c), we take pa = 0 (as discussed above), so that the boundary
condition becomes p = 0 at the free surface z = η(x, y, t). To express this
boundary condition in terms of our fundamental variables φ and η, we use
(8.28b), which holds throughout the fluid, and we apply it at the free surface
with p = 0. Then, linearizing this boundary condition in the same way as
(8.28a), we obtain

∂φ

∂t
(x, y, 0, t) + gη(x, y, t) = 0 (8.32)

as the linear approximation to (8.29c). The bottom boundary condition
(8.29a) is already in linear form, as is the mass conservation equation (8.28a).

Here is the plan: We shall solve the equation (8.28a) subject to the bot-
tom boundary condition (8.29a) and the top boundary conditions (8.31) and
(8.32). We call this the linear problem (LP) for φ and η. As we shall see, LP
completely determines φ(x, y, z, t) and η(x, y, t). Then if we want to know
p(x, y, z, t), we can simply calculate it from (8.28b). Of course, our solution
is valid only in the limit of infinitesimally small waves, because that was the
assumption made in replacing the exact surface boundary conditions by their
linear approximations (8.31) and (8.32).

Before tackling LP, we pause to admire the wonderful advantages of linear
equations. Suppose that you have found a solution to LP. Let your partic-
ular solution be φ1(x, y, z, t) and η1(x, y, t). It is actually a whole family of
solutions. For, as you can easily verify, if φ1(x, y, z, t) and η1(x, y, t) satisfy
LP, then so does Cφ1(x, y, z, t) and Cη1(x, y, t), where C is any constant. In
other words, every solution has an arbitrary amplitude C, provided only that
C is small enough to justify the approximations underlying LP.
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But there is more. Suppose you find the solution φ1(x, y, z, t) and η1(x, y, t),
and your friend finds a completely different solution φ2(x, y, z, t) and η2(x, y, t).
Then, as you can easily verify, the sum of the two solutions, φ1(x, y, z, t) +
φ2(x, y, z, t) and η1(x, y, t) + η2(x, y, t), also solves LP. This is Postulate #2
writ large. It is called the superposition principle, and it applies to any set of
linear equations. Solutions can be added together to produce new solutions.
This is not true of the general, nonlinear fluid equations.

Now for the solution of LP. First we eliminate η between (8.31) and (8.32)
to get a top boundary condition,

∂2φ

∂t2
(x, y, 0, t) + g

∂φ

∂z
(x, y, 0, t) = 0 (8.33)

that involves only φ. The equation (8.28a) and the boundary conditions
(8.29a) and (8.33) will determine φ(x, y, z, t). Because of the superposition
principle, it is sufficient to look for solutions of the form,

φ(x, y, z, t) = F (z) sin(kx+ ly − ωt) (8.34)

where k and l are arbitrary constants, F (z) is a function to be determined,
and ω is a constant to be determined. Substituting (8.34) into (8.28a) yields

d2F

dz2
= κ2F (8.35)

where κ2 = k2 + l2. The general solution of (8.35) is

F (z) = C1
′eκz + C2

′e−κz (8.36)

where C1
′ and C2

′ are arbitrary constants. However, it will prove more
convenient to write this in the equivalent form

F (z) = C1 cosh (κ(z +H0)) + C2 sinh (κ(z +H0)) (8.37)

where C1, C2 are a different set of arbitrary constants, related to C1
′, C2

′ in
the obvious way. Substituting

φ(x, y, z, t) = [C1 cosh (κ(z +H0)) + C2 sinh (κ(z +H0))] sin(kx+ ly − ωt)
(8.38)

into the bottom boundary condition (8.29a), we obtain

(C1κ sinh(0) + C2κ cosh(0)) sin(kx+ ly − ωt) = C2κ sin(kx+ ly − ωt) = 0
(8.39)
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Since this must hold for all (x, y, t), we must have C2 = 0. Thus (8.38)
becomes

φ(x, y, z, t) = C1 cosh (κ(z +H0)) sin(kx+ ly − ωt) (8.40)

Substituting (8.40) into the top boundary condition (8.33) yields

−ω2C1 cosh(κH0) + gκC1 sinh(κH0) = 0 (8.41)

We can satisfy (8.41) by setting C1 = 0, but that would correspond to the
trivial solution φ ≡ 0. If on the other hand C1 6= 0, then (8.41) implies

ω2 = gκ tanh(κH0) (8.42)

which is the general dispersion relation for water waves! From (8.32) and
(8.40) we have

η = −1

g

∂φ

∂t
(x, y, 0, t) =

ωC1

g
cosh(κH0) cos(kx+ ly − ωt) (8.43)

while from (8.14) and (8.40) we have

u =
∂φ

∂x
(x, y, z, t) = kC1 cosh (κ(z +H0)) cos(kx+ ly − ωt) (8.44)

and

w =
∂φ

∂z
(x, y, z, t) = κC1 sinh (κ(z +H0)) sin(kx+ ly − ωt) (8.45)

Setting

A =
ωC1

g
cosh(κH0) =

κC1

ω
sinh(kH0) (8.46)

these become
η = A cos(kx+ ly − ωt), (8.47)

u = Aω
k

κ

cosh (κ(z +H0))

sinh(κH0)
cos(kx+ ly − ωt), (8.48)

and

w = Aω
sinh (κ(z +H0))

sinh(κH0)
sin(kx+ ly − ωt), (8.49)
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which are just the equations given by Postulate #1. This justifies our use of
Postulates #1 and #2, and virtually everything we have done in the previous
chapters.

Now let’s return to the issue of potential flow. What really justifies (8.14)?
The answer to this question goes right to the heart of fluid mechanics. Con-
sider the curl of the velocity field v(x, y, z, t). It is called the vorticity, and
it is defined by

Q ≡ ∇× v =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
u v w

∣∣∣∣∣∣ =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
(8.50)

Physically speaking, the vorticity Q turns out to be twice the angular ve-
locity of the fluid in a reference frame moving with the local fluid velocity.
Comparing (8.15) and (8.50), we see that the special conditions satisfied by
potential flow are equivalent to the vanishing of the vorticity Q. Conversely,
every flow whose vorticity vanishes is a potential flow.

Why should the vorticity vanish? To answer that, we must derive an
evolution equation for Q analogous to the evolution equation (8.10) for the
velocity v. We do this by applying the curl operator (∇×) to (8.10). The
right-hand side of (8.10) is annihilated, because the curl of a gradient always
vanishes. The final result, after a few vector identities, is

∂Q

∂t
+ (v · ∇)Q− (Q · ∇)v = 0 (8.51)

This is an important equation, and a proper understanding of it demands
some effort. That would take us much deeper into fluid mechanics than our
time allows. Here we only want to make two points. First, waves generated
by atmospheric pressure fluctuations do not acquire vorticity, because, as we
have seen, the curl of the pressure gradient vanishes. Second, according to
(8.51), if Q vanishes initially, then it vanishes for all time. These two points
justify (8.14), but all of this is far from obvious, and, historically speaking,
it took a very long time to be fully understood.

The interesting thing about Q is that it is a prerequisite for fluid tur-
bulence. Potential flows are never turbulent. However, (8.51) allows Q to
grow rapidly even if only a small amount of Q is initially present. Breaking
waves generate large amounts of Q and rapidly become turbulent. Thus the
theory of potential flow is useful in describing ocean waves up to the point of
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breaking. Between the breakers and the beach, vorticity must be taken into
account.

Assuming that the flow is a potential flow, we have linearized the equa-
tions of ideal hydrodynamics to recover the contents of Postulates #1 and
#2. However, the general nonlinear equations describe waves with realisti-
cally large amplitude. How can we learn about these? One way is to postu-
late a series expansion of all the dependent variables in powers of the wave
amplitude A. The first terms in each series represent linear theory. Higher
order terms represent corrections to linear theory. This exercise is very labor
intensive! We give only a few results. For a deep water wave moving in the
positive x-direction, the expansion procedure yields the Stokes wave

DW η = A cos θ +
1

2
kA2 cos 2θ +

3

8
k2A3 cos 3θ + · · · (8.52)

where θ = kx−ωt. The surface elevation corresponding to (8.52) has sharper
crests and flatter troughs than the pure cosine wave. The corresponding
phase speed is given by

DW c2 =
g

k
(1 + k2A2 + · · · ) (8.53)

At leading order, (8.53) agrees with linear theory, in which the phase speed
depends only on wavelength. However, at second order, the phase speed de-
pends on the amplitude of the wave, and we find that large-amplitude waves
move slightly faster than small-amplitude waves of the same wavelength. The
dependence of phase speed on wave amplitude is a hallmark of nonlinearity.

This chapter could be described as a whirlwind introduction to fluid me-
chanics. Our goal has been to justify the two postulates underlying all our
previous results, and to show how these postulates follow from the basic laws
of physics—the conservation of mass and momentum. To really understand
fluid mechanics, you need to take some specialized courses. Maybe you will!



Chapter 9

The shallow-water equations.
Tsunamis

Our study of waves approaching the beach had stopped at the point of wave
breaking. At the point of wave breaking, the linear theory underlying Postu-
lates #1 and #2 breaks down. In chapter 8, we derived the general nonlinear
equations of fluid mechanics—equations (8.8) and (8.9). These general equa-
tions govern wave breaking and the turbulent flow that results. However, the
general equations are very difficult to handle mathematically.

In this chapter, we derive simpler but less general equations that ap-
ply only to flow in shallow water but still include nonlinear effects. These
shallow-water equations apply to flow in the surf zone, as well as to tides
and tsunamis. The shallow-water equations require that the horizontal scale
of the flow be much larger than the fluid depth. In chapter 1 we considered
this limit in the context of Postulate #1. There it corresponded to the limit
kH → 0, and it led to nondispersive waves traveling at the speed c =

√
gH.

We will see these waves again.
We start with the general equations for three-dimensional fluid motion de-

rived in chapter 8—equations (8.8) and (8.9). Now, however, we specifically
avoid the assumption (8.14) of potential flow. The assumption of potential
flow is invalid for breaking waves because wave-breaking generates vorticity,
and it is invalid for tides because the Earth’s rotation is a source of vorticity
in tides.

We start by writing out (8.8) and (8.9) in full detail. The mass conser-
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vation equation is
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (9.1)

and the equations for momentum conservation in each direction are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
(9.2a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
(9.2b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
− g (9.2c)

The shallow-water approximation is based upon two assumptions. The
first assumption is that the left-hand side of (9.2c)—the vertical component,
Dw/Dt, of the acceleration—can be neglected. If the vertical acceleration is
negligible, then (9.2c) becomes

∂p

∂z
= −g (9.3)

which is often called the hydrostatic equation. We get an expression for the
pressure by integrating (9.3) with respect to z, from the arbitrary location
(x, y, z) to the point (x, y, η(x, y)) on the free surface directly above. (Since
this is being done at a fixed time, we suppress the time argument.) The
integration yields

0− p(x, y, z) = −g (η(x, y)− z)) (9.4)

because the pressure vanishes on the free surface. Thus, if the vertical accel-
eration is negligible, the pressure

p(x, y, z, t) = g (η(x, y, t)− z) (9.5)

is determined solely by the weight of the overlying water. Substituting (9.5)
back into (9.2a) and (9.2b), we obtain

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g ∂η

∂x
(9.6a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g∂η

∂y
(9.6b)
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Next we apply the second of the two assumptions of shallow-water theory.
We assume that

∂u

∂z
=
∂v

∂z
= 0 (9.7)

That is, we assume that the horizontal velocity components are independent
of z. The fluid motion is said to be columnar. As with the first assumption, it
remains to be seen that (9.7) is an appropriate assumption for shallow-water
flow. However, (9.7) seems reasonable, because, as we saw in chapter 1, SW
waves have a z-independent horizontal velocity; see (1.19c).

If (9.7) holds, then (9.6) take the simpler forms

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
(9.8a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g∂η

∂y
(9.8b)

The two horizontal momentum equations (9.8) represent two equations in
the three dependent variables u(x, y, t), v(x, y, t), and η(x, y, t). To close the
problem, we need a third equation in these same variables.

The third equation comes from the mass conservation equation (9.1). To
get it, we integrate (9.1) from the rigid bottom at z = −H(x, y) to the free
surface at z = η(x, y, t) and apply the kinematic boundary conditions. Since
u and v are independent of z, the integration yields

h

(
∂u

∂x
+
∂v

∂y

)
+ w(x, y, η)− w(x, y,−H) = 0 (9.9)

where
h(x, y, t) ≡ η(x, y, t) +H(x, y) (9.10)

is the vertical thickness of the water column. See figure 9.1.
The kinematic boundary conditions state that fluid particles on the bound-

aries remain on the boundaries. Thus at the free surface we have

0 =
D

Dt
(z − η(x, y, t)) = w − ∂η

∂t
− u∂η

∂x
− v∂η

∂y
(9.11)

and at the rigid bottom we have

0 =
D

Dt
(z +H(x, y)) = w + u

∂H

∂x
+ v

∂H

∂y
(9.12)
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Figure 9.1: The vertical thickness of the fluid is h = η +H.

Using (9.11) and (9.12) to eliminate the vertical velocities in (9.9), we obtain

h

(
∂u

∂x
+
∂v

∂y

)
+
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= 0 (9.13)

Combining terms in (9.13) we have

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (9.14)

which can also be written in the form

∂η

∂t
+

∂

∂x
(u(η +H)) +

∂

∂y
(v(η +H)) = 0 (9.15)

Equation (9.15) is the required third equation in the variables u(x, y, t),
v(x, y, t), and η(x, y, t). However, the definition (9.10) allows us to use either
η(x, y, t) or h(x, y, t) as the third dependent variable.

Although their derivation has taken a bit of work, the shallow-water equa-
tions (9.8,9.15) make good physical sense all on their own. Take the mass
conservation equation in the form (9.14). In vector notation it is

∂h

∂t
+∇ · (hu) = 0 (9.16)

where u = (u, v) is the z-independent horizontal velocity. Equation (9.14) or
(9.16) is a conservation law of the general form (8.1). According to (9.16),
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the fluid thickness h increases if the mass flux hu = (hu, hv) converges. The
momentum equations (9.8) can be written in the vector form

Du

Dt
= −g∇η (9.17)

where now
D

Dt
=

∂

∂t
+ u(x, y, t)

∂

∂x
+ v(x, y, t)

∂

∂y
(9.18)

is the time derivative following a moving fluid column. According to (9.17),
fluid columns are accelerated away from where the sea surface elevation η is
greatest. In other words, gravity tends to flatten the free surface.

Before saying anything more about the general, nonlinear form—(9.8) and
(9.15)—of the shallow water equations, we consider the corresponding linear
equations. Suppose, as in chapter 8, that the motion is a slight departure
from the state of rest, in which u = v = η = 0. Then we may neglect the
products of u, v and η in (9.8) and (9.15). The resulting equations are the
linear shallow-water equations:

∂u

∂t
= −g ∂η

∂x
(9.19a)

∂v

∂t
= −g∂η

∂y
(9.19b)

∂η

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0 (9.19c)

The linear equations (9.19) may be combined to give a single equation in a
single unknown. Taking the time derivative of (9.19c) and substituting from
(9.19a) and (9.19b), we obtain

∂2η

∂t2
=

∂

∂x

(
gH

∂η

∂x

)
+

∂

∂y

(
gH

∂η

∂y

)
(9.20)

If we specialize (9.20) to the case of one space dimension, we have

∂2η

∂t2
=

∂

∂x

(
gH

∂η

∂x

)
(9.21)

and if we further specialize (9.21) to the case of constant H = H0 (corre-
sponding to a flat bottom), we have

∂2η

∂t2
= c2 ∂

2η

∂x2
(9.22)
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where c2 = gH0 is a constant.
The equation (9.22) is often called the ‘wave equation’ despite the fact

that many, many other equations also have wave solutions. However, (9.22)
does have the following remarkable property: The general solution of (9.22)
is given by

η(x, t) = F (x− ct) +G(x+ ct) (9.23)

where F and G are arbitrary functions. In other words, the solution of (9.22)
consists of an arbitrary shape translating to the right at constant speed c
and another arbitrary shape translating to the left at the same speed. In
the remainder of this chapter, we use the linear shallow-water equations as
the basis for a discussion of tsunamis. In chapter 10 we use the nonlinear
shallow-water equations to say something about wave breaking.

Most tsunamis are generated by earthquakes beneath the ocean floor.
(Volcanic eruptions and submarine landslides also generate tsunamis.) The
earthquakes are associated with the motion of the Earth’s tectonic plates.
Most earthquakes occur at plate boundaries when the energy stored in crustal
deformation is released by a sudden slippage. Most tsunamis occur in the
Pacific Ocean, which sees 3 or 4 major tsunamis per century. Tsunamis
are especially likely to occur when a section of the ocean bottom is thrust
vertically upward or downward. Because this happens very suddenly, the
ocean responds by raising or lowering its surface by about the same amount.
If this area of raising or lowering is broader than the ocean is deep, then
the subsequent motion is governed by the shallow-water equations. The
very tragic tsunami of 11 March, 2011, was generated by a magnitude 9.0
earthquake on a thrust fault in the subduction zone just east of the Japanese
island of Honshu. The sea floor there rose suddenly some 5 to 8 meters along
a 300-mile-long rupture zone that was only about 40 miles offshore.

In deep water tsunamis are well described by the linear shallow-water
equation (9.20). (Most tsunami models also include the Coriolis force re-
sulting from the Earth’s rotation, but this is of secondary importance.) To
understand the physics, we consider an idealized, one-dimensional example.
Imagine that an infinitely long section of seafloor, with width W in the x-
direction, suddenly experiences a vertical drop of distance d. This drop is
quickly transmitted to the ocean surface. Assuming that W is much greater
than the ocean depth, and that the seafloor is approximately flat (despite
the drop), (9.22) governs the subsequent motion. Since (9.22) has two time
derivatives, it requires two initial conditions. One of these is the sea surface



Salmon: Introduction to Ocean Waves 109

Figure 9.2: The initial surface displacement resulting from a sudden drop in
the sea floor.

elevation just after the drop,

η(x, 0) = f(x) ≡

{
−d, |x| < W/2

0, |x| > W/2
(9.24)

and the other is the initial horizontal velocity. Refer to figure 9.2. For
simplicity, we suppose that u(x, 0) = 0; the horizontal velocity vanishes
initially. It follows from this and the one-dimensional form

∂η

∂t
= −H0

∂u

∂x
(9.25)

of (9.19c) that
∂η

∂t
(x, 0) = 0 (9.26)

Thus the problem reduces to choosing the arbitrary functions in (9.23) to
satisfy the initial conditions (9.24) and (9.26). Substituting (9.23) into (9.26)
we find that

−cF ′(x) + cG′(x) = 0 (9.27)

for all x. Therefore F (x) = G(x), and it then follows from (9.24) that
F (x) = G(x) = 1

2
f(x). Thus the solution to the problem is

η(x, y) =
1

2
f(x− ct) +

1

2
f(x+ ct) (9.28)

We have already encountered a solution like this in chapter 3; see (3.35).
According to (9.28) the sea-surface depression (9.24) splits into two parts
which move symmetrically apart with speed c. An upward-thrusting seafloor
would produce a local sea-surface elevation that would split apart in the same
way. A non-vanishing initial velocity would destroy the directional symmetry.
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Figure 9.3: Locations of the DART buoys in NOAA’s tsunami warning sys-
tem.

The first thing to say about tsunamis is that they are remarkably fast.
The average ocean depth is about 4 km. This corresponds to a wave speed
c =
√
gH0 of about 200 meters per second, or about 1000 km per hour. This

doesn’t give much warning time. Tsunami warnings are issued as soon as seis-
mometers record a big earthquake. (This happens quickly, because seismic
waves travel very rapidly through the solid earth.) However, not all big earth-
quakes generate tsunamis. For example, an earthquake in a region with a flat
ocean bottom and in which most of the crustal motion is horizontal, would
produce no tsunami. However, even the biggest tsunamis correspond to ocean
bottom displacements of only a few meters. Since these relatively small dis-
placements occur on a horizontal scale of many kilometers, tsunamis are hard
to detect in the deep ocean. Because of their long wavelengths, they cannot
be observed directly from ships. However, tsunamis can be detected by bot-
tom pressure gauges that are acoustically linked to nearby moored DART
buoys (an acronym for Deep-ocean Assessment and Reporting of Tsunami).
DART buoys (figure 9.3) transmit an estimate of sea-surface height via satel-
lite. This provides the confirmation that a tsunami is on its way. Figure 9.4
shows time series of the sea surface height measured by DART during the
2011 Honshu tsunami. The maximum surface elevation of 1.78 meters was
the highest ever recorded by a DART installation. For much more about
the Honshu tsunami, including an animated solution of the shallow-water
equations, see the NOAA website (http://www.tsunami.noaa.gov).
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Figure 9.4: The 2011 Honshu tsunami as seen by DART buoys in the north-
western Pacific. Bottom pressure versus time with the tides removed.

The typical tsunami is a short series of sea-surface elevations and depres-
sions —a wavepacket—with wavelengths greater than 100 km and periods in
the range 10 minutes to one hour. The leading edge of the packet can corre-
spond to a sea-surface depression or to an elevation, but an initial depression
is considered more dangerous because it often entices bathers to explore the
seabed exposed by the initially rapidly receding water.

To predict tsunami amplitudes with any reasonable accuracy one must
solve (9.20) using the realistic ocean bathymetry H(x, y). This definitely
requires the use of a big computer. The initial conditions must be inter-
polated from the buoy measurements. However, since time is so short, this
whole process must be completely automated; such an automatic system is
still under development. It is important to emphasize that tsunamis feel
the effects of the bathymetry everywhere. In this they are unlike the much
shorter wind-generated waves, which feel the bottom only very close to shore.
The bathymetry steers and scatters tsunamis from the very moment they are
generated.

Tsunamis become dangerous as they enter shallow coastal waters. En-
ergy that is initially spread through a water column 4 km thick becomes
concentrated in a few tens of meters. Of course much energy is dissipated by
bottom friction and some is reflected away from shore, but the wave ampli-
tude increases rapidly despite these losses. Shoaling waves of elevation form
bores with heights that sometimes reach 50 to 100 feet at the shoreline. The
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Figure 9.5: Arrival times of the first wave in the 2011 Honshu tsunami,
based on eyewitness reports, tide gauges, and DART data. Each contour
line represents one hour.

maximum height of the Honshu tsunami was about 120 feet.
We have previously considered shoaling wind-generated waves using the

‘slowly varying’ assumption that the ocean depth changes only slightly over a
wavelength. Using the facts that the frequency and the shoreward energy flux
are constants, we predicted the amplitude increase in these waves. However,
slowly varying theory does not apply accurately to tsunamis, because the
wavelengths of tsunamis are so large. On the global scale, the earthquake
that generates the tsunami resembles a ‘point source.’ At large distances
from the source, it resembles a radially symmetric wavepacket with a typical
wavelength of 500 km. Figure 9.5 shows the location of the Honshu tsunami’s
first arrival at hourly intervals. Note how the wave slows down in shallow
water.

The amplitude of the tsunami decreases as the wave spreads its energy
over a circle of increasing radius. In this respect the one-dimensional solu-
tion (9.28) is misleading, as was the corresponding one-dimensional solution
in chapter 4. However, the corresponding two-dimensional problem is much
more difficult; even in the linear case it requires mathematical methods that
you have probably just begun to learn. For that reason, and because the
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nonlinear shallow-water equations are easily treatable only in one space di-
mension, we stick to one-dimensional examples.

It is interesting to examine a case in which shallow-water waves interact
with bathymetry that varies rapidly on the scale of the wave. Although this
violates the assumptions on which the equations were derived, a more detailed
analysis shows that the solutions are still surprisingly accurate. We therefore
consider the case of a shallow-water wave propagating from x = −∞ toward
a step at x = 0 where the water depth changes from the constant value H1

to the constant value H2 (figure 9.6). The incoming wave has the form η =
f(x−c1t), where the function f(s) (with s a dummy argument) is completely
arbitrary. This ‘wave’ could be a wavetrain such as f(s) = cos(k1s), or it
could be a pulse or wavepacket better resembling a tsunami. The step could
represent the edge of the continental shelf (in the case of the tsunami) or a
submerged breakwater or bar (in the case of a surf-zone wave). The solution
must take the form

η(x, t) =

{
f(x− c1t) +G(x+ c1t), x < 0

F (x− c2t), x > 0
(9.29)

where c1 =
√
gH1 and c2 =

√
gH2. Here, G represents the reflected wave

and F represents the transmitted wave. The situation is that f is a given
function, but the functions G and F remain to be determined.

We find G and F by matching the solution across the step. The matching
conditions are that the pressure and the mass flux be continuous at the step.
Continuity of pressure implies continuity of the surface elevation η. Thus

η(0−, t) = η(0+, t) (9.30)

or, using (9.26),
f(−c1t) +G(c1t) = F (−c2t) (9.31)

Figure 9.6: Wave impinging on a step.
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which must hold for all time. Continuity of mass flux implies

H1u(0−, t) = H2u(0+, t) (9.32)

To express the condition (9.32) in terms of η, we take its time derivative and
substitute from (9.19a) to obtain

−gH1
∂η

∂x
(0−, t) = −gH2

∂η

∂x
(0+, t) (9.33)

Substituting (9.29) into (9.33) we obtain

−gH1 (f ′(−c1t) +G′(+c1t)) = −gH2F
′(−c2t) (9.34)

The matching conditions (9.31) and (9.34) determine G and F in terms of
the given function f . Let

α =

√
H2

H1

(9.35)

Then c2 = αc1, and (9.31) may be written

f(s) +G(−s) = F (αs) (9.36)

while (9.34) may be written

f ′(s) +G′(−s) = α2F ′(αs) (9.37)

Here s is simply a dummy variable. The integral of (9.37) is

f(s)−G(−s) = αF (αs) + C (9.38)

where C is a constant of integration. Since this constant merely adds a
constant value to η on each side of the step, we set C = 0. Then, solving
(9.36) and (9.38) for G and F , we obtain

F (s) =
2

1 + α
f(s/α) (9.39)

and

G(s) =
1− α
1 + α

f(−s) (9.40)
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Thus the complete solution is

η(x, t) =

{
f(x− c1t) + 1−α

1+α
f(−x− c1t), x < 0

2
1+α

f ((x− c2t)/α) , x > 0
(9.41)

The solution (9.41) satisfies the wave equation on each side of the step and
the matching conditions across the step.

The solution (9.41) is valid for any f you choose. But suppose you choose
f(s) = A cos(k1s) corresponding to an incoming basic wave. We leave it as
an exercise for you to show that, for this particular choice of f , the solution
(9.41) takes the form

η(x, t) =

{
A cos(k1x− ωt) + 1−α

1+α
A cos(k1x+ ωt), x < 0

2
1+α

A cos(k2x− ωt), x > 0
(9.42)

where A and k1 are arbitrary constants, and ω and k2 are given by

ω = k1

√
gH1 = k2

√
gH2 (9.43)

In both (9.41) and (9.42), the relative amplitudes of the reflected and trans-
mitted waves depend solely on α, which ranges from 0 to ∞. Suppose that
f represents an elevation of the sea surface. That is, suppose f(s) is positive
near s = 0 and vanishes elsewhere. If α is very small—that is, if H2 is very
small—then this pulse of elevation is reflected from the step without a change
in size or in sign. As α increases toward 1, the reflected pulse diminishes in
size, vanishing when α = 1 (no step). At this point, the transmitted pulse is
identical to the incoming pulse. As α increases from 1 to ∞ (pulse moving
from shallow water to deep water), the size of the reflected pulse increases
again, but in this range the reflected pulse has the opposite sign from the
incoming pulse. That is, an elevation reflects as a depression.

This is a good place to say something about energy. We leave it to you
to show that the linearized shallow-water equations (9.19) imply an energy-
conservation equation of the form

∂

∂t

(
1

2
Hu2 +

1

2
Hv2 +

1

2
gη2

)
+

∂

∂x
(gHuη) +

∂

∂y
(gHvη) = 0 (9.44)

The energy per unit horizontal area is

ρ

(
1

2
Hu2 +

1

2
Hv2 +

1

2
gη2

)
(9.45)
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where ρ is the constant mass density. If H is constant, the basic wave

η = A cos
(
k(x−

√
gH0t)

)
(9.46a)

u =
Aω

kH0

cos
(
k(x−

√
gH0t)

)
(9.46a)

is a solution of the linearized shallow-water equations. (Note that (9.46)
agrees with (1.19)). Thus, remembering that the average of cosine squared
is one half, the energy per unit horizontal area of the basic wave, averaged
over a wavelength or period, is

E = ρ

(
1

4

A2ω2

k2H0
2 +

1

4
gA2

)
=

1

2
gρA2 (9.47)

because ω2 = gH0k
2. This finally justifies (2.37), our much used assumption

that the wave energy is proportional to the square of the wave amplitude.
Using this result and the fact that the energy flux equals E times the group
velocity, you should be able to show that, in the solution (9.42), the energy
flux of the incoming wave equals the sum of the energy fluxes in the reflected
and transmitted waves.



Chapter 10

Breakers, bores and longshore
currents

There is lots more to say about linear, shallow-water waves, but now we
want to say something about the more general, nonlinear case. To keep the
math as simple as possible, we continue to restrict ourselves to one space
dimension.

The nonlinear shallow-water equations come into play when the linear
equations break down. That happens when the wave amplitudes become too
large to justify the small-amplitude assumption behind linear theory. In one
dimension, the nonlinear shallow-water equations (9.8) and (9.14) may be
written in the form

∂u

∂t
+ u

∂u

∂x
= −g∂(h−H)

∂x
(10.1a)

∂h

∂t
+
∂(hu)

∂x
= 0 (10.1b)

In the linear (i.e. small-amplitude) limit, (10.1) take the forms

∂u

∂t
= −g∂(h−H)

∂x
(10.2a)

∂h

∂t
+
∂(Hu)

∂x
= 0 (10.2b)

where H(x) is a given function. Equations (10.2) are equivalent to the one-
dimensional version of (9.19). The linear equations (10.2) apply to long waves
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seaward of the breaker zone. In the breaker zone itself we must use the more
exact equations (10.1).

The nonlinear property of (10.1) makes them very hard to solve, but we
make progress if we are willing to regard the H(x) in (10.1a) as a constant.
Since the increase in wave amplitude is associated with a decrease in H(x),
such an approximation seems very hard to justify. However, we take the
following viewpoint: The decreasing water depth causes the wave amplitude
to increase to the point where nonlinear effects become important. These
nonlinear effects then cause a rapid steepening of the waves. This steepening
occurs before the depth can decrease much further. Therefore we are justified
in considering (10.1) without the dH/dx-term, namely

∂u

∂t
+ u

∂u

∂x
= −g∂h

∂x
(10.3a)

∂h

∂t
+
∂(hu)

∂x
= 0 (10.3b)

If you find this sort of reasoning unconvincing, you might be comforted to
know that (10.1) have in fact been solved; we refer to that solution below.
However the solution of (10.1) involves some mathematical tricks that are a
bit too advanced for this course. The solution of (10.3) is much easier, yet it
still tells us something about wave steepening and breaking.

It is a somewhat astonishing fact that the two equations (10.3) can be
written in the forms (

∂

∂t
+ (u+ c)

∂

∂x

)
(u+ 2c) = 0 (10.4a)(

∂

∂t
+ (u− c) ∂

∂x

)
(u− 2c) = 0 (10.4b)

where now we define c(x, t) ≡
√
gh(x, t). In (10.4) we regard u(x, t) and

c(x, t) as the dependent variables. To show that (10.4) are equivalent to
(10.3), simply take the sum and difference of (10.4).

According to (10.4), an observer moving at the speed u + c always sees
the same value of u+ 2c, while an observer moving at the speed u− c always
sees the same value of u − 2c. An easy way to satisfy (10.4b) would be to
set u− 2c equal to a constant. Why would we want to do that? Suppose we
have a wave moving to the right—toward positive x—and into still water. If
u < c, the observer corresponding to (10.4b) is moving to the left. He sees
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the same value of u− 2c that he saw at x = +∞, where the water is at rest.
Hence

u− 2c = −2
√
gH0 ≡ −2c0 (10.5)

everywhere in the flow, where H0 is the constant value of h in the quiescent
region at x = +∞. Substituting (10.5) into (10.3b) yields

∂h

∂t
+ C(h)

∂h

∂x
= 0 (10.6a)

where
C(h) ≡ 3

√
gh− 2

√
gH0 (10.6b)

Equation (10.6a) is an equation in h alone.
According to (10.6a), an observer moving to the right at speed C(h)

always sees the same value of h. Suppose that the initial condition h(x, 0) ≡
h0(x) is given. The observer initially at x1 moves along the straight line

x = x1 + C(h0(x1))t (10.7)

and always observes the value h = h0(x1). The line (10.7) is called a char-
acteristic. Every point on the x-axis corresponds to a characteristic. Each
characteristic is defined by its x-intercept x1. Defining

C(x1) ≡ C(h0(x1)) = 3
√
gh0(x1)− 2

√
gH0 (10.8)

we see that each characteristic has a constant speed dx/dt = C(x1). For
typical initial conditions—h0(x1) not extremely different from H0—all the
speeds are positive. However if C ′(x1) < 0 then the speeds of the charac-
teristics decrease to the right, and the characteristics must eventually cross.
Since C(x1) decreases wherever h0(x1) decreases, characteristics eventually
cross if the initial depth satisfies dh0/dx < 0 anywhere within the domain.
When the characteristics cross, h becomes triple-valued, and the solution
breaks down. The crossing point corresponds to an infinite surface slope,
and hence to wave breaking.

When and where does this first occur? To answer that, we must find
the first time at which two observers arrive at the same point with different
values of h. Let the first observer follow (10.7), always observing h = h0(x1).
Let the second observer follow

x = x2 + C(h0(x2))t (10.9)
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always observing h = h0(x2). At the crossing point,

x1 + C(x1)t = x2 + C(x2)t (10.10)

The first crossing of characteristics must occur when x2 = x1 + δx, where δx
is infinitesimal. Then (10.10) becomes

x1 + C(x1)t = x1 + δx+ C(x1)t+ C ′(x1)δx t (10.11)

Canceling terms, we find that wave breaking first occurs when

t =
−1

C ′(x1)
(10.12)

That is, breaking occurs at the time (10.12) on the characteristic correspond-
ing to the most negative value of h0

′(x). This corresponds to the point at
which the initial surface slope decreases most rapidly to the right.

As a model of wave breaking, this calculation leaves much to be desired.
For one thing, it predicts that wave breaking always eventually occurs, no
matter how small the initial wave amplitude. However, observations and cal-
culations using more accurate approximations show that some waves never
break. Nevertheless, there is one feature of the solution to (10.3) that is infor-
mative and certainly correct: When waves do break, it is because their deeper
parts—the crests—move faster that their shallow parts—the troughs—and
hence overtake them.

In 1958 George Carrier and Harvey Greenspan produced a stunning, ex-
act, analytical solution of (10.1) for a uniformly sloping beach—a beach with
a constant value of s = |dH/dx|. Figure 10.1 shows their solution as a dashed
line, at three times in the wave cycle. In the case shown, the beach slope s
is sufficiently large that the incoming wave (from the right in this case) does
not break, but instead reflects to form a standing wave. (The solid line in
the figure corresponds to a numerical solution of the same problem, and the
comparison was made to test the numerical algorithm.)

The Carrier-Greenspan solution breaks down, implying that the incoming
wave breaks (instead of reflecting) if

s2 <
ω2Ashore

g
(10.13)

where Ashore is the wave amplitude at the shore, that is, half the vertical
distance between high water and low water on the beach. For waves with
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Figure 10.1: Carrier-Greenspan solution of a standing wave on a uniformly
sloping beach.

Ashore = 1m and 10-second period (10.13) predicts wave-breaking on beaches
with slopes less than 0.20. Since very few beaches are steeper than this, wave
breaking is the rule. Figure 10.1 depicts the Carrier-Greenspan solution near
the limit of wave breaking; the vertical scale has been exaggerated for ease
of viewing.

One problem with the Carrier-Greenspan solution is that it simultane-
ously assumes shallow-water dynamics and a constant bottom slope. These
two assumptions are incompatible! In regions for which the water depth is
much greater than the wavelength, shallow-water dynamics does not apply.
In 1963 Joseph Keller matched the Carrier-Greenspan solution to the solution
of the linear-waves equations in deep water—more complicated mathematics!
Keller’s analysis provides the link between the wave amplitude A∞ in deep
water and the amplitude Ashore at the shoreline. Keller found that

Ashore =

√
2π

s
A∞ (10.14)

for waves that reach the shore without breaking. Substituting (10.14) into
(10.13), we obtain the criterion for wave breaking,

s5/2 <
√

2πk∞A∞ (10.15)

in terms of the wave amplitude A∞ and wavenumber k∞ in deep water. The
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Figure 10.2: A turbulent bore.

breaking criterion (10.15) is equivalent to

s

(k∞A∞)2/5
< (2π)1/5 = 1.44 (10.16)

Observations suggest that the breaking of waves on beaches is governed by
the ‘surf similarity parameter’

χ ≡ s√
k∞A∞

(10.17)

which is proportional to the ratio of the bottom slope to the wave slope in
deep water. When χ is greater than about 1.9, wave breaking does not occur,
and the waves reflect from the beach. When is about 1.9, the waves break
right at the water line. When 0.25 < χ < 1.9 the waves break offshore as
‘plunging breakers’: the front face steepens and overturns to form a jet that
plunges into the water ahead of the wave. When χ < 0.25 the waves break as
‘spilling breakers’: the wave retains its symmetrical appearance, but white
(aerated) water appears at the crest and subsequently spreads down over the
front face of the wave.

What happens after waves break? Frequently they form turbulent bores,
nearly discontinuous changes in surface height that resemble moving steps
(figure 10.2). The turbulence in these bores dissipates energy very rapidly;
the bores rapidly diminish in height. However, apart from the momentum
transferred to the ocean bottom through bottom drag, the momentum of the
fluid is conserved. As the waves dissipate, this momentum is converted to
the momentum of currents.

Dissipating waves drive currents in the direction of their wavevector k.
Thus waves normally incident on a uniformly sloping beach drive currents
directly toward the shore. This leads to set up—an increase of surface ele-
vation at the shoreline (figure 10.3). The pressure gradient associated with
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Figure 10.3: Incoming waves lead to set up and an opposing pressure gradi-
ent.

Figure 10.4: When the wavevector k has a longshore component, wave break-
ing drives a longshore current.

set up drives an offshore current that cancels the shoreward drift of fluid
particles associated with the incoming waves.

Even on a uniformly sloping beach, things are seldom so simple. The in-
coming waves are never exactly normal to the shoreline. Although refraction
turns the wavevector k toward the beach, k retains a longshore component.
When the wave breaks, it drives a longshore current in the direction of its k
(figure 10.4).

A deeper analysis of this situation shows that a wavetrain with average
energy E creates a current with momentum

U =
E

c

k

|k|
(10.18)
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Figure 10.5: Longshore currents converge to form a rip current.

where k is the wavevector of the wave and c is its phase velocity. The right-
hand side of (10.18) is called the pseudomomentum of the wave. If E has units
of velocity squared, then U is the velocity of the current that results from
wave-breaking. For the reasons stated above, it is the longshore component
of (10.18) that is most important.

On non-uniformly sloping beaches such as Scripps beach, refraction can
turn wavevectors away from the shoreline. For example, refraction by the
two submarine canyons bends k towards Scripps pier from both north and
south. The breaking of the northward propagating wave drives a northward
flowing longshore current, and conversely. The convergence of these two
longshore currents almost certainly explains the rip current that is almost
always present about 300 meters south of Scripps pier (figure 10.5).

The currents created by wave breaking in the surface zone are never
steady. Even in the case of the uniformly sloping beach, the longshore current
may become unstable, breaking up into eddies. It seems best to regard flow in
the surf zone as consisting of two fields: a wave field that drives currents as the
waves break, and a current field that—along with depth variations—refracts
the incoming waves. This course has offered a fairly complete description of
the wave field up to the point where wave breaking transforms the waves into
currents. What is the corresponding description of the current field?

We cannot go into the details, but the currents are governed by the non-
linear shallow-water equations. Because the timescale of the currents is much
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Figure 10.6: (a) Equal-strength counter-rotating vortices move in a direction
perpendicular to a line joining their centers, while (b) like-signed vortices
move in a circular trajectory.

Figure 10.7: A breaking wave generates vortices at its edges.

longer than the period of the waves, the currents see the ocean surface as
a rigid lid. This simplifies the problem enormously; the currents then obey
the dynamics of what is called “two-dimensional turbulence.” A useful ide-
alization of two-dimensional turbulence regards the flow as consisting of a
large number of point vortices. Each vortex induces a circular flow about its
center. The direction of the circular flow may be either clockwise or counter-
clockwise, depending on the sign of the vortex. Each vortex is swept along
in the flow caused by all the other vortices. Thus two vortices with equal
strengths and opposite signs move on a straight line perpendicular to the
line between their centers (figure 10.6a), while two vortices of the same sign
move in a circle (figure 10.6b). A breaking wave crest generates vortices at its
edges, as shown in figure 10.7. These vortices propel each other toward the
shore, where they encounter image vortices that enforce the boundary condi-
tion of no flow into the shoreline. These image vortices cause the real vortices
to move apart (figure 10.8). As vortices move parallel to the shoreline, they
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Figure 10.8: The vortex pair separates as it approaches the shoreline.

Figure 10.9: Converging vortices induce an offshore current.

encounter other vortices, moving in the opposite direction. Converging vor-
tices produce an offshore current (figure 10.9). In reality, this is a turbulent
process, involving many vortices. The figures show what happens in very
idealized cases.

There is one further feature of surf zone waves that should be mentioned.
The tendency for incoming waves to appear in sets means that the set up at
the shore varies on a timescale of minutes. This variation generates low-
frequency waves that propagate back toward the deep ocean. Although
these infragravity waves cannot be directly observed, they are clearly vis-
ible in wave spectra. If the direction of the outgoing infragravity waves is
not perfectly normal to the shoreline, then the outgoing infragravity waves
are refracted back toward shore, forming low-frequency edge waves that are
trapped along the shore. The edge waves behave like traveling waves in the
longshore direction, and like standing waves in the cross-shore direction.
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None of these post-breaking phenomena can be adequately explained
without the heavy use of fluid mechanics. The foregoing discussion merely
conveys the flavor of the subject. Even the full theory seems inadequate
to the task; despite much effort, the oceanography of the surf zone remains
highly empirical and poorly understood. This subject is further complicated
by the fact that both waves and currents affect the shape of the ocean bot-
tom through the formation of sand bars and other features. The bars in turn
affect wave breaking and the dynamics of currents. A complete understand-
ing of the surf zone must include sediment transport, tides, and local winds.
This is a good place to end our course!


