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ANALYTICAL SOLUTIONS OF THE ONE-LINE MODEL

OF SHORELINE CHANGE

PART I: INTRODUCTION

Background

1. Mathematical modeling of shoreline change has proven to be a useful

engineering technique for understanding and predicting the evolution of the

plan shape of sandy beaches. In particular, mathematical models provide a

concise, quantitative means of describing systematic trends in shoreline evo-

lution commonly observed at groins, jetties, and detached breakwaters and

produced by coastal engineering activities such as beach nourishment and sand

mining.

2. Qualitative and quantitative understanding of idealized shoreline

response to the governing processes is necessary in investigations of beach

behavior. By developing analytical or closed-form solutions originating from

mathematical models which describe the basic physics involved to a satisfac-

tory level of accuracy, essential features of beach response may be derived,

isolated, and more readily comprehended than in complex approaches such as

numerical and physical modeling. Also, with an analytical solution as a

starting point, it is possible to estimate, rapidly and economically, charac-

teristic quantities associated with the phenomenon, such as the time elapsed

before bypassing of a groin occurs, percentage of volume lost from a beach

fill, and growth of a salient (emerging tombolo) behind a detached breakwater.

Another useful property is the capability to obtain equilibrium conditions

from asymptotic solutions. Closed-form solutions for shoreline change can

also be used as a teaching aid. However, the complexity of beach change

implies that results obtained from a model should be interpreted with care and

with awareness of the underlying assumptions. Closed-form mathematical models

cannot be expected to provide quantitatively accurate solutions to problems

involving complex boundary conditions and wave inputs. In engineering design,

a numerical model of shoreline evolution would be more appropriate.

3. The equations describing shoreline evolution fast become excessively

complicated to permit analytical treatment if too many phenomena are described



in one formulation. Therefore, to obtain a closed-form solution to shoreline

change, a simple mathematical formulation has to be used, but one which still

preserves the important mechanisms involved. The one-line (denoting the

shoreline) theory was introduced by Pelnard-Considere (1956), and it has been

demonstrated to be adequate in this respect. Considerable numerical modeling

of long-term shoreline evolution (time-scale on the order of years) has been

done on the basis of this work. However, not many analytical approaches have

been published, probably because of their limited applicability for describing

the finer details of shoreline change. Contributors in this field include

Bakker and Edelman (1965), Bakker (1969), Bakker, Klein-Breteler , and Roos

(1971), Bakker (1970), Grijm (1961, 1965), Le Mehaute and Brebner (1961),

Le Mehaute and Soldate (1977, 1978, 1979), and Walton and Chiu (1979).

One-Line Theory

4. The aim of the one-line theory is to describe long-term variations

in shoreline position. Short-term variations (e.g., changes caused by storms

or by rip currents) are regarded as negligible perturbations superimposed on

the main trend of shoreline evolution. In the one-line theory, the beach pro-

file is assumed to maintain an equilibrium shape, implying that all bottom

contours are parallel. Consequently, under this assumption it is sufficient

to consider the movement of one line in studying the shoreline change, and

that line is conveniently taken to be the shoreline, which is easily observed

(Figure 1)

.

5. In the model, longshore sand transport is assumed to occur uniformly

over the whole beach profile down to a certain critical depth D called the

depth of closure. No sand is presumed to move alongshore in the region sea-

ward of this depth. If the beach profile moves only parallel to itself

(maintaining its shape) , a change in shoreline position Ay at a certain

point is related to the change in cross-sectional area AA at the same

point according to Equation 1:

AA = AyD (1)



where
2

AA = change in cross-sectional beach area (m )

Ay = change in shoreline position (m)

D = maximum depth for sand motion (depth of closure) (m)

6. The principle of mass conservation must apply to the system at all

times. By considering a control volume of sand and formulating a mass balance

during an infinitesimal interval of time, the following differential equation

is obtained (see Figure 1)

:

9Q + ^ =
9x 3t

(2)

where

Q = longshore sand transport rate (m /sec)

2
A = cross-sectional area of the beach (m )

x = space coordinate along the axis parallel to the trend of the
shoreline (m)

t = time (sec)

Shoreline

Figure 1. Schematic illustration of a hypothetical equilibrium
beach profile

7. Equation 2 states that the longshore variation in the sand transport

rate is balanced by changes in the shoreline position. If, in addition to

longshore transport, a line source or sink of sand at the shoreline is con-

sidered, Equation 2 takes the following form:



|2 + M = ±q ( 3 )
ax 9t

where q denotes the source or sink of sand per unit length of beach

(m /m/sec) . The minus sign denotes a sink (loss of sand) , and the plus sign

denotes a source.

8. In order to solve Equation 2, it is necessary to specify an expres-

sion for the longshore sand transport rate. Longshore sand transport on an

open coast is believed to bear a close relation to the longshore current which

is generated by waves obliquely incident to the shoreline. A general expres-

sion for the longshore transport rate is

Q = Q sin 2a, (4)

where
3

Q = amplitude of longshore sand transport rate (m /sec)

a, = angle between breaking wave crests and shoreline
b

In the generally accepted formula for longshore current, the speed of the cur-

rent is proportional to sin 2a, (Longuet-Higgins 1970a, b)

.

9. The angle between the breaking wave crests and the shoreline

(Figure 2) may be expressed as

a, = a - arc tan ( tt~ I (5)bo \9x/

in which

a = angle of breaking wave crests relative to an axis set parallel
to the trend of the shoreline

9y/9x = local shoreline orientation

10. A wide range of expressions exists for the amplitude of the long-

shore sand transport rate, mainly based on empirical results. For example,

the Shore Protection Manual (SPM) (1984) gives the following equation:

% - if
H
sb

CH ur^rn (6)



where

p = density of water (kg/m )

2
g = acceleration of gravity (m/sec )

H = significant breaking wave height (m)
sb

Cg, = wave group velocity at breaking point (m/sec)
b

K = nondimensional empirical constant
3

p = density of sand (kg/m )

X = porosity of sand

Figure 2. Definition sketch for geometric properties at a

specific location as related to shoreline change

11. If Equation 5 is substituted into Equation 4, the sand transport

rate can be written:

Q = Q sin

(
2
[% - ™ «• (If)]} (7)

12. For beaches with mild slopes, it can safely be assumed that the

breaking wave angle relative to the shoreline and the shoreline orientation

are small. The consequences and validity of this assumption, which linearizes

Equation 7, are discussed further in this report. Under the assumption of

small angles, to first order in a Taylor series,

10



* Qo(
2a

o - 2
If) (8)

13. If the amplitude of the longshore sand transport rate and the inci-

dent breaking wave angle are constant (independent of x and t) the follow-

ing equation may be derived from Equations 1, 2, and 8:

. 4 - H (9)

where

2Q
£=-/ (10)

14. Equation 9 is formally identical to the one-dimensional equation

describing conduction of heat in solids or the diffusion equation. Thus, many

analytical solutions can be found by applying the proper analogies between

initial and boundary conditions for shoreline evolution and the processes of

heat conduction and diffusion. The coefficient e , having the dimensions of

length squared over time, is interpreted as a diffusion coefficient expressing

the time scale of shoreline change following a disturbance (wave action) . A

high amplitude of the longshore sand transport rate produces a rapid shoreline

response to achieve a new state of equilibrium with the incident waves. Fur-

thermore, a larger depth of closure indicates that a larger part of the beach

profile participates in the sand movement, leading to a slower shoreline

response.

15. If the amplitude of the longshore sand transport rate is a function

of x , the governing differential equation for the shoreline position will

take a different form:

2
3 y , de 3y _ de , 3y nn
„ 2 dx 3x o dx 3t
3x

where it is assumed that the depth of closure is constant. Equation 11 makes

it possible, in a simplified way, to account for diffraction behind a groin,

where the wave height varies with distance alongshore. However, the

11



expression describing the variation in Q In a diffraction zone must be
o

simple enough to allow an analytical solution. Otherwise, a numerical

solution technique must be employed (Kraus and Harikai 1983, Kraus 1983, and

Hanson and Kraus 1986) . If the incident breaking wave angle a is also a
o

function of the distance x , another term, eda /dx , must be added to the
o

right side of Equation 11.

16. In summary, the assumptions which comprise the one-line model, in

which breaking waves are the dominant sand-moving process, are as follows:

a. The beach profile moves parallel to itself fassumption of

equilibrium of the beach profile)

.

b. Longshore sand transport takes place uniformly over the beach
profile down to a depth D (depth of closure)

.

£. Details of the nearshore circulation are neglected.

d. The longshore sand transport rate is proportional to the angle
of incidence of breaking wave crests to the shoreline.

17. In addition, the following assumptions will be used to derive

analytical (closed-form) solutions of the one-line model (Equation 9)

:

a. The angle between the breaking wave crests and the shoreline is

small (small-angle approximation)

.

b. The angle of the shoreline with respect to the x-axis is small.

18. In arriving at all solutions, it is tacitly assumed that sand is

always available for transport unless explicitly restricted by boundary and/or

initial conditions.

Overview of Previous Analytical Work

19. Pelnard-Considere (1956) was the first to employ mathematical

modeling as a method of describing shoreline evolution. He introduced the

one-line theory and verified its applicability with laboratory experiments.

Figure 3 shows a comparison between experimental results and the analytical

solution for the case of an updrift groin, as obtained by Pelnard-Considere.

Pelnard-Considere derived analytical solutions of Equation 9, the linearized

shoreline change equation, for three different boundary conditions: shoreline

evolution updrift of a groin (with and without bypassing) and release of an

instantaneous plane source of sand on the beach.

20. Grijm (1961) studied delta formation from rivers discharging sand.

In the transport equation discussed in his article, the sand transport rate

12



Initial Sh oreline •

Groin

SCALE LEGEND

Physical model

Analytical model

Figure 3. Comparison between experimental and theoretical shoreline
evolution (after Pelnard-Considere 1956)

is set to be proportional to twice the incident breaking wave angle to the

shoreline. Only solutions which were similar in shape during the course of

time are discussed. Two different analytical solutions are presented: one

for which the incident breaking wave angle and the shoreline orientation angle

are small and one for which the wave angle is small in comparison with the

shoreline orientation. The governing equations (sand transport and mass con-

servation) are expressed in polar coordinates and solved numerically. Grijm

(1965) further develops this technique ^nd presents a wide range of delta for-

mations. Komar (1973) also presents numerically obtained solutions of delta

growth under highly simplified conditions.

21. Le Mehaute and Brebner (1961) discuss solutions for shoreline

change at groins, with and without bypassing of sand, and the effect of sudden

dumping of material at a given point. Most of the solutions were previously

derived by Pelnard-Considere (1956), but they are more thoroughly presented in

Le Mehaute and Brebner' s work, especially regarding geometric aspects of the

shoreline change. The decay of an undulating shoreline and the equilibrium

shape of the shoreline between two headlands are treated.

22. Bakker and Edelman (1965) modify the longshore sand transport rate

equation to allow for an analytical treatment without linearization. The sand

transport rate is divided into two different cases:

13



Q = Q K. tan a,
O 1 D

S tan a, < 1.23
b

(12)

Q = Q, 1.23 < tan a. (13)

where K and K„ are constants. From these equations as a starting point,

the growth of river deltas was studied.

23. Bakker (1969) extends the one-line theory to include two lines to

describe beach planform change. The beach profile is divided into two parts,

one relating to shoreline movement and one to movement of an offshore contour

(see Figure 4) . The two-line theory provides a better description of sand

1
Groin -y jfir-

Figure 4. Definition sketch for the two-
line theory (after Bakker 1968)

movement downdrift of a long groin since it describes representative changes

in the contours seaward of the groin head. Near structures such as groins,

offshore contours may have a different shape from the shoreline. The two

lines in the model are represented by a system of two differential equations

which are coupled through a term describing cross-shore transport. According

to Bakker (1969), the cross-shore transport rate depends on the steepness of

the beach profile; a steep profile implies offshore sand transport; and gently

sloping profile implies onshore sand transport. Analytical solutions of the

two-line theory are not included in the present report. However, an example

of a two-line theory solution for a groin system is shown in Figure 5. The

solution describes the stationary form of the shoreline for various groin

spacings given in multiples of a nondimensional groin length L

24. The two-line theory is further developed in Bakker, Klein-Breteler,

and Roos (1971) in which diffraction behind a groin is treated. In this case,

it became necessary to numerically solve the governing equations. Expressions

for the coastal constant (diffusion coefficient e) for the one- and two-line

14



Distance Between Groins: I L

*\ Distance Between Groins: qq

Figure 5. Two-line theory solution for a groin system
(after Bakker 1968)

theories are also presented. Bakker (1970) developed a phenomenological dif-

fraction routine for one-line theory but numerically solved the problem.

25. Le Mehaute and Soldate (1977) present a brief literature survey on

the subject of mathematical modeling of shoreline evolution. Analytical solu-

tions of the linearized shoreline change equation are discussed together with

the spread of a rectangular beach fill. In Le Mehaute and Soldate (1978,

1979) a numerical model is derived which includes variation in sea level, wave

refraction and diffraction, rip currents, and the effects of coastal struc-

tures in connection with long-term shoreline evolution.

26. Until recently, the most complete summary of analytical solutions

to the sand transport equation has been made by Walton and Chiu (1979). Two

derivations of the linearized shoreline change equation are presented together

with another approach resulting in a nonlinear model. The difference between

the two approaches, which both arrive at the diffusion equation, is that one

uses the Coastal Engineering Research Center (CERC) formula (SPM 1984, Chap-

ter 4) for describing the longshore sand transport rate by wave action and the

15



other a formula derived by Dean (1973) based on the assumption that the major

sand transport occurs as suspended load. Most analytical solutions then

appearing in the literature were presented by Walton and Chiu (1979). Addi-

tional solutions mainly concern beach nourishment in connection with various

shoreline shapes. The new solutions derived by Walton and Chiu (1979) treat

beach fill in a triangular shape, a rectangular gap in a beach, and a semi-

infinite rectangular fill. Some data on the coastal constant are also pre-

sented in the paper.

27. Analytical solutions can be used conveniently to describe the be-

havior of beach fill, as mentioned above. Dean (1984) gives a brief survey of

some solutions applicable to beach nourishment calculations, especially in the

form of characteristic quantities describing loss percentages. One solution

describes the shoreline change between two groins initially filled with sand.

The resultant shoreline evolution with time is shown in Figure 6.

Figure 6. Shoreline evolution between two groins initially filled
with sand (after Dean 1984)

General Approach in the Present Work

28. The simplified or linearized shoreline change equation (Equation 9)

is a linear partial differential equation which is identical to the equation

describing one-dimensional conduction of heat in a solid or to the diffusion

equation. By specifying boundary and initial conditions in these areas which

represent conditions prevailing in a specific shoreline evolution situation,

the corresponding analytical solutions are directly applicable. Carslaw and

16



Jaeger provide many solutions of the heat conduction equation, and Crank

(1975) gives solutions to the diffusion equation.

29. The following paragraphs present a review of previously obtained

solutions together with new solutions. The new solutions have been derived

either from analogies with heat conduction or through the Laplace transform

technique, a short outline for which is given in Appendix A. Carslaw and

Jaeger (1959) provide a more comprehensive treatment. In order to present the

solutions in an efficient and general format dimensionless variables have been

used to a large extent although physical understanding may be obscured by the

absence of dimensional quantities. Also, in many cases for which the solution

is symmetric with respect to a coordinate axis, the solution for only one side

of the symmetry line is displayed. The solutions have been divided into two

groups based on the physical properties of the initial and boundary condi-

tions, not on their mathematical properties, because the object of the report

is to present solutions and not to describe details of their derivation. The

first group of solutions describes shoreline change situations without coastal

structures. Solutions describing shoreline evolution in these cases are

applicable both to natural and artificial beach forms (nourished beaches) if

similar types of wave conditions prevail. Also, several solutions describing

river delta growth are presented covering the cases of a river discharging

sand as a point source and a river mouth of finite length.

30. The other group of solutions comprises configurations involving

various types of coastal structures such as groins, jetties, detached break-

waters, and seawalls. Since the equations quickly become complicated, the

influence of coastal structures on shoreline evolution has to be idealized to

a considerable extent. However, the essential features of the situation may

still be preserved if this idealization is carried out in a physically reason-

able manner. Some simple models to account for diffraction downdrift of a

groin are shown also.

31. Most of the analytical solutions are presented in the main text

without derivation. Reference is made to the appropriate literature in case

the reader is interested in deriving the solutions. Also, in Appendixes B-G,

derivations are given for selected new solutions.
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PART II: SOLUTIONS FOR SHORELINE EVOLUTION WITHOUT
COASTAL STRUCTURES

General Formal Solution

32. The basic differential equation to solve is Equation 9, together

with the associated initial and boundary conditions. An infinitely long beach

is assumed to be exposed to waves of constant height and period with wave

crests parallel to the x-axis (parallel to the trend of the shoreline) . The

shoreline will adjust to reach an equilibrium state in which the longshore

sand transport rate is equal at every point along the shoreline. Since the

wave crests are parallel to the x-axis, the equilibrium sand transport rate is

zero. An initially straight beach is thus the stable shoreline form in this

case. If the shoreline shape at time t = is described by a function

f(x) , the solution of Equation 9 is given by the following integral (Carslaw

and Jaeger 1959, p. 53)

:

^ ,

j( ) e
-( x- C )

2
/4et ^ (U)

2

for t > and -<» < x < oo .

The shoreline position is denoted by y and is a function of x and t .

The quantity £ is a dummy integration variable. Consequently, the change in

both natural and manipulated beach forms can be determined if Equation 14 is

evaluated. Equation 14 may be interpreted as a superposition of an infinite

number of plane sources instantaneously released at t = . The source

located at point £ contributes an amount f(£)d£ to the system. Infinitely

far away from such a single source no effect on the shoreline position is

assumed (boundary condition) . Equation 14 is used to derive most of the solu-

tions dealing with various shoreline configurations in the following text.



Finite Rectangular Beach Fill

33. The solution to this problem in connection with shoreline change is

first mentioned by Le Mehaute and Soldate (1977). At time t = , the shore-

line has a rectangular shape of finite length 2a described by Equation 15

(see Figure 7)

:

y(x,0) = f(x) = < (15)

The solution is

y(x,t) = ^ Y erf
2/et

+ erfm (16)

for t > and -°° < x <

6 °-6-

0.S 1

ALONGSHORE DISTANCE (x/a)

1.5

Figure 7. Shoreline evolution of an initially rectangular beach

fill exposed to waves arriving normal to shore
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The symbol erf denotes the error function which is defined as

z

if -eerf z = — / e * d£ (17)

At

The error function is tabulated in standard mathematical reference books

(e.g., Abramowitz and Stegun 1965). It is convenient to introduce the fol-

lowing dimensionless quantities:

y' = 2- (18)
y„

(19)

. _ et
(20)

The quantity used to normalize the time variable expresses half the time

elapsed before a square beach fill of length a would completely erode at the

constant transport rate Q . If the solution is expressed in dimensionless

quantities, the resultant shoreline evolution can be displayed in compact

form. Figure 7 illustrates how a rectangular fill spreads or diminishes with

time according to Equation 16. It should be noted that the vertical scale of

this and the following figures has been distorted for the sake of clarity.

34. Dean (1984) discusses how the sand from two different beach nour-

ishment projects spreads with time. The time t „ for a certain percentage

P to be lost from the original rectangular beach fill is compared with the

corresponding time t for different conditions:

H 2
- Hi (?)' I

35. This formula is obtained by noting that the same percentage of

beach volume is lost during the same dimensionless time. Consequently, a

20



rectangular beach fill which is twice as long maintains its volume four times

as long if exposed to the same wave conditions. It is possible to calculate

the time it will take for a certain percentage P to be lost from the initial

rectangular fill. The following expression is obtained by integrating Equa-

tion 16 and comparing the resulting volume at a specific time to the original

fill volume:

P = /t 7" (— - ierfc —

]

(22)

where ierfc denotes the integral of the complementary error function erfc

CO

/ierfc z = / erfc £ d? (23)

erfc z = 1 - erf z (24)

Figure 8 shows the percentage of sand volume lost as a function of time.

36. It is possible to determine the rate of sand to be supplied to the

fill in order to maintain the original shape. The boundary condition for this

case is that the end of the rectangular fill is kept at the initial position:

y(0,t) = yQ
(25)

Note in this case that the x-axis originates from the corner of the fill

instead of from the middle of the fill as in Equation 16. The solution de-

scribing the resultant shoreline evolution is (Carslaw and Jaeger 1959,

p. 60):

\2/n)
y(x,t) = yo

erfc [ ^^ )
(26)

for t > and x > .
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Figure 8. Percentage of sand volume lost from a rectangular
fill as a function of dimensionless time

Sand has to be added to the corner of the fill at the following rate:

2y,

Q = (27)

The spread of the moving shoreline front (Equation 26) is illustrated in

Figure 9.

37. It is advisable to use the analytical expressions describing shore-

line evolution for a rectangular fill with great care, even for rough estima-

tions, because the linearization procedure (Equation 8) is based on small

shoreline orientation angles, a condition which is violated on the sides of

the rectangle. In fact, the linearized transport equation implies an infi-

nitely large initial sand transport rate at the edges of the fill. However,

the original transport equation (Equation 7) gives a zero transport rate at

the corners; thus, a rectangular beach form is stable to parallel incident

waves. In reality, sand transport occurs at the corners because of
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Figure 9. Shoreline evolution when sand is supplied at x =

to maintain a specific beach width yr o

diffraction and refraction, but this realistic situation is not described by

the linearized equation. Consequently, the linearization procedure artifi-

cially increases the erosion of the fill, implying that the analytical solu-

tion overestimates the speed of erosion. The error is, therefore, on the con-

servative side. This problem is only an apparent one since it is a practical

impossibility to create a perfectly rectangular fill in the field.

Semi-Infinite Rectangular Beach Fill

38, The initial conditions for a semi-infinite rectangular beach fill

y(x,0) =

x <

x >

(28)

Walton and Chiu (1979) give the following solution:
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y (x, t) = y erfc
2 /Ft

(29)

for t > and -<*> < x < °o
.

The solution is antisymmetric about the y-axis , taking the constant value

v /2 at x = . If the shape of the shoreline for x > is approximated
o

by a triangle having height y /2 so as to conserve mass, the speed of prop-

agation of the triangle's front is inversely proportional to the square root

of elapsed time. This relationship is also valid for Equation 26. Figure 10

illustrates the solution of Equation 29. The right side of Equation 29 for

x > equals half the solution of Equation 26.

o 0.6-

RLONGSHORE DISTANCE lx/y )

Figure 10. Shoreline evolution of an initially semi-infinite
rectangular beach

Rectangular Cut in a Beach

39. The initial conditions for rectangular cut in a beach are formu-

lated as

24



y(x,0) = (30)

These conditions may represent an excavation or a natural embayment of rec-

tangular shape. Walton and Chiu (1979) present the following solution:

y(x,t) = 2 yQ
erf c 2_IJE\ + erfc /iii\

2/e t / \2/e t /

(31)

for t > and -« < x < oo .

This- solution may be obtained by superimposing Equation 16 with a negative

sign on a beach of width y . In general, with due regard to the boundary

and initial conditions, it is possible to derive new solutions simply by

superimposing existing solutions since the governing differential equation

(Equation 9) is linear. Equation 31 is symmetric with respect to the y-axis,

and only half of the solution region is illustrated in Figure 11.

0.5 1 1.5 2

RL0NGSH0RE DISTANCE (x/o)

Figure 11. Shoreline evolution of a rectangular cut in an
infinite beach of width y
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40. Since the present situation is the inverse problem of the rectangu-

lar beach fill, Figure 8 can be used to evaluate the rate of infilling of a

certain volumetric percentage of sand.

Triangular-Shaped Beach

41. The triangular-shaped solution is also mentioned by Walton and Chiu

(1979). The original beach has the shape of a triangle according to the

initial conditions as follows:

y(x,0) =

< x < a

-a < x <

|x| > a

(32)

In this case the solution takes the following form:

y(x,t) = Yg \ ( a - x ) erf /*^JE\ + (a + x) erf /^f\ - 2x erf /-£--\

\2/e t ) \2/e t / \2/e t/

+ *4¥l--
(x+a)

2
/4 e t . -(x-a)

2
/4 e t . -x

2
/4 e t

+ e - ze
1}

(33)

for t > and -<» < x < » .

A nondimensional illustration of the shoreline evolution from an initially

triangular beach is shown in Figure 12.

42. Depending upon the height-to-width ratio of the triangle, lineari-

zation of the transport equation may reduce accuracy of the analytical solu-

tion. However, even though the assumptions forming the basis for the lineari-

zation procedure appear to be extremely limiting (particularly in requiring

small wave angles) , in practice the analytical solution is found to be appli-

cable for angles as large as about 45 deg between the shoreline and the break-

ing waves. In order to estimate the effect of the linearization, a comparison
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ALONGSHORE DISTANCE (x/a)

Figure 12. Shoreline evolution of an initially triangular beach

was made between the analytical solution and a numerical solution with the

original sand transport equation (Equation 7). Figure 13 shows the result as

a function of the height-to-width ratio and elapsed time.

43. It is quite clear that the analytical solution produces a higher

rate of shoreline change by overestimating the longshore sand transport rate

(since a > sin a). Thus, if the analytical solution is used to estimate the

time scale involved in beach nourishment problems, a higher rate of attenua-

tion of the fill will always be obtained than is expected to actually occur.

Trapezoidal-Shaped Beach

44. A trapezoidal beach form is described by the following initial

conditions:

y(x,0) =

y-i - yi
X +

y
l
X
2

" X
l
y 2

(34)

X < X, , X > x r
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Here y. and y~ denote shoreline positions corresponding to the longshore

locations x and x„ . The solution is

y(x,t) = 1 /
y
2

" y
l .

y
l
X
2

- X
l
y
2

2 \ x
2

- x
L

x +
k

2
A

l

X„ - X \ fx. - J

erf I
— - erf '

2/et 2/et

yo - y,1\ let r
(xrx)

2/A e t_ -(x
2
-x)

2

/4,
(35)

for t > and

0.5 1

ALONGSHORE DISTANCE (x/a)

Figure 13. Comparison between analytical solution with the
linearized transport equation and numerical solution with
the original transport equation for a triangular beach fill

(for height-to-width ratios 1.0 and 0.5)

The solution for the triangular beach form (Equation 33) can be obtained by

superimposing two trapezoidal beach shapes which reduce to triangles. In the

same way, in principle, the analytical solution for any arbitrary shoreline

shape may be obtained by approximating the shoreline with a series of straight

lines. Even though the sand transport at each boundary of the trapezoids in
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such a case is overestimated (because of the large incident wave angle) super-

imposition of the solutions eliminates these effects. In Figure 14 the solu-

tion for a single trapezoidal beach form is shown. A representative length L

has been chosen to normalize the shoreline position and the alongshore

distance.

1-

1

L2

0.8- \ t'=

0.05\

0.6- / 0. 1 \ \
/ /"'O. 15 NyX \

0.4- //^^0.3O^N\^

0.2-

i
1— 1 1 i

0.5 1 1.5 2 2.5 3

ALONGSHORE DISTANCE (x/L)

Figure 14. Shoreline evolution of an initially trapezoidal
beach form

45. If an arbitrary-shaped shoreline is studied, it is most convenient

to approximate it with a series of straight lines and then to superimpose the

respective solutions. Consider a shoreline (see Figure 15) divided into N

reaches, with each length described by a straight line connecting two

neighboring points denoted by (x. , y.) and (x,,, , y- + i) f° r a certain

reach (the i reach)

.
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Figure 15. Shoreline of arbitrary shape approximated by N

straight lines

46. The shoreline position can be written, accordingly:

(x,t) -I £
i=l

- erf

i+1
x +

y
i
x
i+l " X

i
yi+1

'i+1

i+1

2/et

i+1

'i+1

- y.i

erf

2 J—
'4et

2 /it

Et

for t > and -°° < x <

(36)

Semicircular-Shaped Beach

47. In order to find an analytical solution for a beach formed in a

half circle between -a < x < a , the circle is approximated by a polygon with

a finite number of corners (Figure 16)

.

48. The solution can be obtained using Equation 36 with proper expres-

sions for the line segments. The following quantities are defined:

R
l
"(i - Oil

.
= a cos |____

j

x
i

= a cos (f5t)

(37)

(38)
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y
i

= a sin (irrr) (39)

k. =

tan
N - 1

(40)

The integer N is the number of corners in the polygon approximating the

semicircle. For example, if N = 3 then a triangular beach form is obtained.

The solution can be written with the previously defined quantities:

N-l

y(x,t) =| J <

i=l

I k.x. + y . - k.x]
V i i

;
i i /

„ £ ill) . erf (iii:
2v^t 2/Tt

+ 2k.
1 > TT

-(xJ-x)/4 E t
_

-(x^x)/4 £t

(41)

for t > -oo < x <

» X
-a a

Figure 16. Semicircular-shaped beach approximated by a polygon
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In the limit N + °° the polygon coincides with a semicircle. The solution

(N = 101) is illustrated in Figure 17 which shows the shoreline evolution as a

function of time for an initially semicircular-shaped beach.

t
1 = o

0.5 1 1.5 2

ALONGSHORE DISTANCE (x/a)

Figure 17. Shoreline evolution of an initially semicircular
beach

49. If the beach is formed as a circular segment, the solution may be

derived by superimposing Equation 41 with the appropriate summation limits and

Equation 16 with reversed sign. In Figure 18 a definition sketch is shown.

If the pitch height is denoted by p , then the width of the circle segment

becomes 2v'p(2a - p) . Furthermore, the height of the rectangular fill is

a - p , and the angle a (see Figure 18) is arc sin (1 - p/a) . Conse-

quently, the summation of the solutions for the polygon stretches should start

at angle a in the semicircle and end at angle it - a . The solution is
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N-m-1

'(x.t) =
\ £

i=m+l

y\ + k
±
(xj - x)

+ 2k. J^
i > t\

-(xi-
x)74et -(xrx)/ 4 et

2 ( a " P)

for t > and -°° < x <

.£
/ /p(2a - p) - x \

+ erf
//p(2a - p) +

\ 2/eT / \ 2 /it
(42)

, 1

Vp(2a - p)

i

^Tl

p

l/^a

-a a

Figure 18. Definition sketch for a circular segment-shaped beach

The quantity N is, as before, the number of corners in the polygon, and m

represents the number of corners minus one contained in the angle a . Fig-

ure 19 illustrates the transformation of an initially circular segment-shaped

shoreline.

50. Since the tangent of the shoreline orientation (see Equation 5) is

infinite at the corners of the semicircle (x = ±a) , the condition of small
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Figure 19. Shoreline evolution of an initially circular
segment-shaped beach (a = 45 deg)

angles is violated. This condition implies, as previously discussed, that the

sand transport is overestimated, leading to a faster dispersion process of the

shoreline toward the stable condition (a beach parallel to the wave crests)

.

An analytical solution for a circular segment-shaped beach, however, will show

better agreement with the numerical solution of the original sand transport

formula if the angle of shoreline orientation is small at the edges. A com-

parison between an analytical and a numerical solution for a circular segment

beach is illustrated in Figure 20. In this case the linearization approxi-

mates the transport equation well; thus, the solution is accurate.

Semicircular Cut in a Beach

51. The situation of a semicircular cut in a beach is the antisymmetric

analog of the case described in the previous section. A solution is obtained

by superimposing Equation 41 with opposite sign for a beach of width a . The

solution is displayed in Figure 21.
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Analytical Soln:

Numerical Soln:

0.5 1 1.5 :

RLONGSHORE DISTANCE (x/o)

Figure 20. Comparison between analytical and numerical solu-
tions for the case of a circular segment-shaped beach
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Figure 21. Shoreline evolution of an initially semicircular cut

in a beach
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52. In the same way, shoreline evolution of a bay formed in a circular

segment may be calculated. Equation 42 is superimposed with opposite sign on

a beach of width p (pitch height) . Figure 22 shows the solution.

0.3-
t

1 -
i

1 .0
s.
3J

0.2- 0.6

o 0.4______^—

-

i-

01o 0^2^^'^
kJ
-z.

0.1 - o.\s^
a;o t'=

ct

CO a2

o/
0.0-

1 1 i i
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ALONGSHORE DISTANCE (x/a)

Figure 22. Shoreline evolution of an initially circular
segment cut in a beach (a = 45 deg)

Rhythmic Beach

53. A beach with a rhythmic shoreline in the form of a cosine wave at-

tenuates with time but maintains its rhythmic character. The initial condi-

tion is

y(x,0) = A cos ax (43)

where A represents the amplitude of the rhythmic form such as cusps along

the beach, and a denotes the wave number of the shoreline oscillation or

cusp. The quantity a can be expressed also as 2tt/L , where L is the

beach cusp wave length. The solution to this case is found to be
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y(x,t) = A cos ax e

2
-a et

(44)

for t > and -« < x < °° .

Le Mehaute and Brebner (1961) and Bakker (1969) give this solution. A non-

dimensional diagram of the shoreline evolution of an initially cosine-shaped

beach is shown in Figure 23.

0.5 1 1.5

ALONGSHORE DISTANCE (x/L)

Figure 23. Shoreline evolution of an initially cosine-shaped
beach (a distance of one beach cusp height added to the

shoreline position)

Sand Discharge from a River Acting as a Point Source

54. If a river mouth is small in comparison to the area into which it

is discharging sand, the discharge may be approximated by a point source. The

sand discharge from the river or the strength of the point source is denoted
3

as q and is a function of time. (The units of q_ are m /sec.) A solu-
K K

tion may be obtained by considering the continuous sand discharge from the

river to be the sum of discretely released quantities of sand at consecutive
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times. If a certain volume of sand V is instantaneously released at a point

x at time t , the solution can be written
s s

,,
-(x-x

)

2Ae(t-t )

, „s V \ s/ / s . .

y(x,t) = — e (45)

2D/ire(t - t )

for t > t and -°° < x < °° .

s

Equation 45 has been discussed by Le Mehaute and Brebner (1961) and by

Le Mehaute and Soldate (1977). Accordingly, a superposition of an infinite

number of such released quantities can be used to represent the sand discharge

from a river. According to Carslaw and Jaeger (1959, p. 262), the solution

for a point source with a continuous time variable sand discharge q may be

expressed as

)/^J R

-(x-x
s )

2
/4e(t-0

_ :|

y(x,t) — / q U) e
x °" s

(46)

2D/^ J /t - C

for t > and -°° < x <

If q„ is constant and equal to q , the solution is
K O

, r ,
qo rr -(vx

)

2

/4et % - X x-x
-=—2i erfc J ^ (47)
2e

2/FE

for t > and -°° < x < °°
.

Equation 47 is identical to the solution describing a constant flux q /2 on

the boundary (x = 0) for a beach of semi-infinite extent. Figure 24 illu-

strates the solution where L is used as a normalizing length, and the point

source is located at x = L . The nondimensional quantity containing the

shoreline position is formed as the ratio between the amplitude of the sand

transport rate and the sand discharge from the river.
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Figure 24. Shoreline evolution in the vicinity of a river dis-
charging sand and acting as a point source

55. If the sand discharge has a periodic behavior, the function q

could take the following form:

qR
(t) = q

Q
+ q

s
sin (tot + (j>) (48)

where

q = steady sand discharge from river

q = amplitude of periodic sand discharge

a) = angular frequency = 2ir/T

T = period of oscillation of sand discharge from river

<\>
= phase angle of periodic variation

The solution consists of two parts, namely Equation 47 describing the shore-

line evolution from a steady point source and the following solution which

accounts for the periodic component:
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y(x,t)
q

d/ett

/t

= /•*"[to(t - r> +
2

// r
2

-x /4e£
d5 (49)

The shoreline behavior is composed of one contribution that evolves roughly

proportional to the square root of elapsed time and another contribution which

is a periodic oscillation that damps out along the x-axis with a decay factor

Jii)/2e (both in the negative and positive directions). Consequently, beyond a

certain distance from the discharge the periodic effect of Equation 49 can be

neglected, implying that the solution may be approximated by Equation 47 only.

Because of the periodic variation in the discharge, sand waves are generated

from the river mouth. These sand waves propagate with a speed /2eu along

the x-axis, and the time lag between the oscillation in sand discharge at the

river mouth and a specific location is tt/4 + x/a)/2e . In Figure 25 the

shoreline evolution at specific locations in the vicinity of a point source of

sand discharge with a periodic variation in strength is shown as a function of

0.5-

L0CRTI0N (x/L)

o.o

3 4

TIME (et/L
J

)

Figure 25. Shoreline evolution in the vicinity of a river discharging
sand with a periodic variation in strength as a function of time

(oiL /e = 2 ,
= , q /<) = q /<} = 0.5)
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time. The quantities in the figure are dimensionless, with the sand discharge

from the river normalized by the amplitude of the sand transport rate Q and
2

°

the angular frequency of the oscillation normalized by e/L . Figure 25

clearly shows how the superimposed sinusoidal-shaped variation damps out with

distance from the source along the x-axis.

Sand Discharge from a River Mouth of Finite Length

56. If the river mouth has a finite width in comparison to the area

into which it is discharging sand, an approximation by a point source is no

longer accurate. Instead of supplying sand to the system via the boundary or

initial conditions, the mass conservation equation in the full form of Equa-

tion 3 is applied. The sand discharge from the river q is considered a

continuous function of x , varying along the river mouth. The river mouth is

assigned a length 2a , and the sand discharge is measured per unit width.

Mathematically, the situation is expressed as

2
3 y, qR 3yi

-r +
d
5

it ° s * s * (50 >

3x

3 y
2

3y
:

2~~
=
Ite —=— = —

—

x > a (51)

y
1
(x,o) = y (x,o) = (52)

3y
x

3y 2

3x ~ 9x

9y

.,. - x = (53)

y, = y
1

J
2

y
2

= x -» » (54)
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57. The problem consists of two coupled partial differential equations

with appropriate boundary and initial conditions. Since the configuration is

symmetric with respect to the center of the river mouth (if q is constant),

only half of the problem domain has to be treated. The boundary conditions

are no sand transport through the center of the river (symmetry), and mass

conservation should apply between the two solution areas. Also, the beach

must be continuous at all times over this boundary. Furthermore, the shore-

line is unaffected by the river sand discharge as x approaches infinity.

According to Carslaw and Jaeger (1959, p. 80) the solution is

yi
(x,t) =— 1 - 2i erfc

2/et

-.2 , / a + x
- 2i erfc

.

2/et
(55)

for t > and < x < a .

y (x,t) =
2V

•
2 fi erfc

2/et

.2 ,, / x + a
- i erfc

.

2/et
(56)

for t > and x > a .

58. The function ierfc is defined in Equation 23 and the superscript

2 denotes a double integration. An exponent n represents n integrations

of the complementary error function. The following recurrence relation holds

for n > 1 :

„ .n . n~2 .n-1 .
2n l erfc x = i erfc x - 2x l erfc x (57)

In Figure 26 the solution to Equations 55 and 56 is illustrated,
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Figure 26. Shoreline evolution in the vicinity of a sand-
discharging river mouth of finite width

59. A nondimensional quantity describing shoreline change is defined

according to

y >(x»,t') - r<*.t)eD

4qR
a

(58)

The quantity used to normalize Equation 58 can be written by using Equation 10

to arrive at

2aq,

(59)

This quantity can be interpreted as a ratio between sand discharge from the

river and the amplitude of the sand transport rate produced by the waves. The

solutions given by Equations 47, 49, 55, and 56 are also valid for the place-

ment of sand (beach nourishment) , provided the placement is made under the

same conditions. Solutions with an opposite sign consequently represent
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mining of sand. Equations 55 and 56 describe only the general features of

delta growth since the river flow conditions within the delta formation are

neglected in the present treatment. The time required for the delta to reach

a certain distance y from the original shoreline position is calculated

from the following relationship

y (t)
D

4i erfc
2/Ft

(60)

for t > and x = .

Equation 60 is illustrated in the nondimensional diagram of Figure 27. For a

specific wave climate, the above relation implies that an increase in the sand

2 3

TIME (et/a
J

)

Figure 27. Maximum delta growth from a sand-discharging river

mouth of finite length

discharge from the river has a proportional effect on the growth of the delta

according to the following relation:
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(61)

Here the indices 1 and 2 refer to two different sand discharge conditions

experiencing the same wave climate.
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PART III: SOLUTIONS FOR SHORELINE EVOLUTION

INVOLVING COASTAL STRUCTURES

60. In the previous chapter, the incident wave crests were restricted

to be parallel to the x-axis. In such a case, an initially straight beach

will always remain straight, unless material is supplied in an irregular way.

If the waves arrive at the same angle to the shoreline everywhere, the beach

will also be stable if it is initially straight. However, if an obstacle on

the beach disturbs the equilibrium transport conditions, a change in shoreline

position occurs in order to achieve a new steady-state configuration. Exam-

ples of such obstacles are groins, jetties, detached breakwaters, and sea-

walls. In order to treat such complex cases analytically, the situation has

to be idealized to a large degree. Properties which generally vary continu-

ously along the shoreline (breaking wave angle, amplitude of the sand trans-

port rate, etc.) usually must be approximated by means of a series of coupled

solutions of simpler problems. Within each solution area the properties are

held constant but are allowed to vary from one area to another.

Shoreline Change at Groins and Jetties

61. The analytical solution for beach change at a groin or any thin

shore-normal structure which blocks alongshore sand transport was first ob-

tained by Pelnard-Considere (1956). Initially, the beach is in equilibrium

(parallel to the x-axis) with the same breaking wave angle existing every-

where, thus leading to a uniform sand transport rate along the beach. At time

t = a thin groin is instantaneously placed at x = , blocking all trans-

port. Mathematically, this boundary condition can be formulated as (see

Equation 7)

P- = tan a x = (62)
8x o

This equation states that the shoreline at the groin is at every instant

parallel to the wave crests. The wave crests make an angle a with the

x-axis according to Figure 28, giving rise to longshore sand transport in the

negative x-direction.
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GROIN

Figure 28. Definition sketch for the case of a groin

62. A groin interrupts the transport of sand alongshore, causing an

accumulation at the updrift side and erosion at the downdrift side. The solu-

tion describing the accumulation part is

y(x,t) = 2 tan a /et ierfc
2/e t

(63)

for t > and x >

The solution can also be written as follows:

y(x,t) = 2 tan a
et -x Met

-
2 erfc

2/eT
(64)

This expression is obtained by integrating the function ierfc by parts. A

nondimensional plot of the shoreline evolution updrift of a groin is shown in

Figure 29.

63. The shoreline position has been normalized with a characteristic

length (the groin length) and the tangent of the incident breaking wave angle.
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Figure 29. Shoreline evolution updrift of a groin which is

totally blocking the transport of sand alongshore

For a specified amplitude of the sand transport rate and the depth of closure,

the ratio of shoreline positions at a given point for two different incident

breaking wave angles is proportional to the following ratio of respective

tangents of the angles:

tan a
ol

tan a
(65)

o2

64. Equation 64 is valid only until the shoreline has reached the tip

of the groin, after which time bypassing of sand is assumed to take place.

This bypassing happens when y = L (length of the groin) at x = , which

occurs at time t„ :

t
G e . . 2

4 tan a

(66)
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The above relationship for a fixed wave climate reveals that if the groin

length is doubled, the time required for the shoreline to reach the end of the

groin will increase fourfold.

65. If bypassing of a groin occurs, the boundary condition at x =

changes into y = L . A correct solution to this situation should fulfill

this boundary condition and use as an initial condition the shoreline shape

just before bypassing occurred, according to Equation 64. An approximate

solution was presented by Pelnard-Considere (1956) who used the solution for a

shoreline with fixed position y at x = (see Equation 26) and matched it

against Equation 64 by equating sand volumes. With this criterion, the

following relationship between the time elapsed before bypassing occurs t
G

(in Equation 64) and the actual time in the matching solution t , which

makes the sand volumes equal, is obtained:

V IT

66. Thus, in the case of bypassing, it is possible to use Equation 26,
2

if the time t is replaced by t. = t - (1 - it /16)t_ for t > t^ . The* G G
rate of sand bypassing the groin for t > t is calculated according to

G
Equation 8 to produce the following relationship:

Q = 2Q
o
a
o
(l - —"t=z (68)

\ a /Tret.. /

for t > t
G

.

Here 2Q a is the sand transport rate at equilibrium (straight beach) under

imposed incident breaking wave angle a , and t. is the modified time in
o *

the matching solution using Equation 26.

67. Formally, the solution downdrift of a groin is the same as that in

Equation 64 but with opposite sign. However, if the groin or jetty extends

far outside the wave breaker line, diffraction will occur behind the groin

altering the breaking wave height and angle; thus the transport capacity
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(Equation 9) does not provide a complete description of the shoreline evolu-

tion if diffraction is significant.

68. Bypassing may occur immediately after construction of a groin and

not start just at the time when the groin is completely filled. If the by-

passing sand transport rate grows exponentially to a limiting value Q the

boundary condition at the groin will be

1Z= a -J-H _ e"
Yt>

)3x o 2 Q V
1 e

/
x = (69)

69. In Appendix B a derivation is given. The quantity y is a rate

coefficient describing the speed at which the bypassing sand discharge grows

toward the limiting value Q The solution downdrift of a groin may be

written (for an initially straight beach) as

- „-jQ^
t -x /4et

erf c

\2/Ft"

-i^J
r 2 2 // r 2Y? -x /4e5

d£ (70)

for t > and x > .

2
Employing the two dimensionless parameters, Q^/Q and yL '/e , the solution

B o

is illustrated in Figure 30.

2
70. The parameter yL /e describes the rate at which the sand bypassing

increases in comparison to the size of the coastal constant (e) . In Equa-

tion 70 the second term is a transient which decays with elapsed time. Ac-

cordingly, after sufficient elapsed time, Equation 70 will be identical to the

solution given by Equation 64 with a modified incident breaking wave angle

at x = (tan ot ss a ) . Equation 70 may be used also to describe shoreline
o o

change updrift of a groin (with reversed sign) if bypassing occurs immediately

after construction of the groin. If, in Equation 70, CL/Q = 2ot , the
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Figure 30. Shoreline evolution downdrift of a groin with
_Yt

bypassing described by Qt,(1 - e ) (QD /Q = 0.7 ,
a „ a o

a. = 0.4 rad , yL It = 2)

bypassing sand discharge will equal the transport rate alongshore behind the

groin at equilibrium conditions. Consequently, the initially eroded area

downdrift of the groin will fill when the bypassing sand rate reaches its

maximum, and the beach will become straight again.

71. In order to investigate the effects of the linearization of the

governing equation (Equation 9) on the solution for a groin, numerical simula-

tions were carried out with the original sand transport equation (Equation 7).

Selected results are displayed in Figures 31 and 32. From the two figures it

is seen that the linearization procedure degrades the solution if the incident

breaking wave angle is about 30 deg. However, the analytical solution has

surprising accuracy, considering the approximations made.
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solutions of shoreline evolution updrift of a groin

with incident breaking wave angle 20 deg

ALONGSHORE DISTANCE (x/L)

Figure 32. Comparison between analytical and numerical

solutions of shoreline evolution updrift of a groin

with incident breaking wave angle 45 deg
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Initially Filled Groin System

72. Dean (1984) presents an analytical solution for shoreline evolution

between two identical groins which define a compartment initially filled with

sand. The distance between the groins is denoted by W , and the groin length

is L . At time t = , the shoreline is exposed to the action of waves

breaking with angle a . The solution is

y(x , t) = L . W (l -
|) tan a

Q
+^^ ][ I

[^^
n=0 (^

-e(2n+l )Vt/4W2
r(2n+l)TTx"| I

COS
|_

2W
J f

(71)

for t > and < x < W

The boundary conditions for this configuration are no sand transport at x =

(8y/9x = tan a ) and a constant shoreline position of y = L at x = W .

Consequently, bypassing occurs at the boundary x = W , whereas no sand enters

the system at x = . This occurrence means that the solution is unsuitable

for application to a groin system of more than one compartment. Otherwise,

bypassing must be accounted for in the boundary conditions at the updrift

groin (left) in each compartment leading to a coupled problem. The last term

in Equation 71 approaches zero as t > °° and causes a shoreline parallel to

the wave crests to be created between the groins. In Figure 33 the analytical

solution is presented in dimensionless form. All distances have been nor-

malized with the compartment width W .

73. The final percentage loss of sand from the groin compartment is

x 7- tan a (72)
L L O
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Figure 33. Shoreline evolution between two groins initially
filled with sand (L/W = 0.33 , a = 0.25 rad)

o

From Equation 71, the sand bypassed (discharge rate) at x = W can be

obtained. The sand transport rate as a function of time can be written (if it

is assumed that tan a « a )
o o

Q( t) = 4Q a V (-l)
n
„ | ..

o o Z^ (2n + l)n
-e(2n+l)

2
ir

2
t/4W

2

n=0

(73)

for t > and x = W .

In Equation 73, the quantity 2Q a is the sand transport rate along a

straight beach exposed to the incident breaking wave angle a . (This is the

transport initially existing when the groin compartment is completely filled.)

If Q in Equation 73 is normalized with this quantity, the bypassing sand

discharge at the downdrift end groin is conveniently displayed in dimension-

less form. Figure 34 shows such a curve.
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Figure 34. Bypassing sand transport rate at the downdrift end

of a groin x = W as a function of time

Shoreline Change at a Detached Breakwater

74. A detached breakwater reduces the wave height behind it and pro-

duces a circular wave pattern at each tip, thus decreasing the longshore sand

transport rate. The actual effects are quite complex to describe and involve

diffraction and the current field resulting from spatial changes in wave

height and direction. However, it is possible to find an analytical solution

if the situation is idealized.

75. It is assumed that the incident breaking wave crests are parallel

to the x-axis and to the detached breakwater. When the waves reach the break-

water, they are assumed to be diffracted at a constant angle behind the break-

water (shadowed region) and remain parallel to the x-axis outside of the

breakwater (the illuminated region). The diffraction behind the breakwater is

symmetric about the center of the breakwater and, accordingly, only half of

the problem domain needs to be considered. In Figure 35, a definition sketch

is shown.
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Figure 35. Definition sketch for the problem of shoreline change in

the vicinity of a detached breakwater

76. Since the incident breaking wave angles and the amplitudes of the

sand transport rates

shadowed and illuminated regions, a coupled problem arises,

conditions for this case are as follows:

a.

Q , respectively, are different in the

The boundary

No sand should be transported across the line of symmetry
behind the breakwater.

b. The sand transport rate out of the area on the right side of

the breakwater should be equal to that into the area behind the

breakwater.

c. The shoreline is continuous over the boundary between the two
areas.

Furthermore, the shoreline should be undisturbed (y = 0) far from the struc-

ture. With y. denoting the shoreline position in solution area number 1

(shadow region) and y„ denoting the shoreline position in solution area num-

ber 2 (the illuminated region) , the mathematical formulation of the situation

is
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3 y
l

3y
x

-L < x < (74)

3 y
2

9y
2

3t~~-2 2
dX

x > (75)

y^x.O) = y
2
(x,0) = (76)

*1w = tan v x = -L (77)

Hi Hi?°i +
3x 3x Q ,

a
ol

ol

x = (78)

yi = y-. x = o

Vo = (79)

77. The derivation of this solution is presented in Appendix C. The

quantities Q . and Q are the amplitudes of the longshore sand transport
*ol <o2

rate in the respective areas, and a . is the diffracted breaking wave angle

behind the breakwater. The angle a „ is zero since the wave crests in this

area are parallel to the x-axis throughout time. The solution is, with

(80)
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6a ,

y.(x,c) = - 7—;

—

- 2/e,t lerfc
6 + 1

w
l

2/e.t

+ tan a
ol 1 \ (m)

n

2/V ierfc
"

n=0 (^

(2n + 1)L + x

2/et

mr 2/e.t ierfc
(2n + 1)L - x

2/e.t

ril i (frr)
2/V ierfc

n=0

2(n + 1)L + x

2/£
l
t

- 1\
\S + 1

n+1

2/e t ierfc
2(n + 1)L - x

2/e.t
(81)

for t > and -L < x < .

y
2
(x,t) = " 6~TT ?ViTE ierfc '

2/e
x
t

n=0 I

6 tan a , r- , . ,. n
+ 2 -WT21 I (frr) ^ i«f<

n=0 (^

6x + 2(n + 1)L

2/e lt

6x + (2n + 1)L

2/e7
(82)

for t > and x >
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78. The distance L is half the length of the detached breakwater. If

Equations 81 and 82 are plotted, the following behavior will be noticed. When

the breakwater is placed in front of the initially straight shoreline at time

t = , erosion of the shoreline starts at points in line with the corners of

the breakwater. Simultaneously, the shoreline grows to form a salient about

the line of symmetry behind the breakwater. Because of the gradient of the

shoreline outside the shadow of the breakwater, material is transported

toward the breakwater in order to achieve a state of equilibrium with the

waves. The shoreline behind the breakwater also approaches an equilibrium

configuration which is parallel to the wave crests diffracted at the angle

a , . The final shoreline will be inclined at an angle a , behind the
ol ol

breakwater and be straight outside the breakwater. However, the straight

portion of the shoreline will at all times be displaced landward a small

distance, controlled by the volume of sand that has accumulated behind the

breakwater. Figure 36 illustrates the solution in dimensionless form for
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Figure 36. Initial shoreline evolution in the vicinity of a

shore-parallel detached breakwater (6 =0.5 , a, =0.4 rad ,

a
o2

= 0)

short elapsed times, and Figure 37 shows the features of the solution after a

long elapsed time. The length of the salient behind the breakwater increases

in time toward a maximum value of
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L tan a
ol

(83)

The elapsed time is normalized by the quantity L /e . Although mass is

conserved across the boundary between the two solution areas, the gradient of

the shoreline is not continuous at this point.
0.5-1

e,t

0.5 1 1.5 2
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Figure 37. Final shoreline position in the vicinity of a shore-
parallel detached breakwater (6 =0.5, a .=0.4 rad ,

«o2 = 0)

Shoreline Change at a Seawall

79. The function of a seawall is to prevent the shoreline from retreat-

ing along a specific coastal reach. If the shoreline remains well seaward of

the seawall, there will be no influence of the seawall on the shoreline evolu-

tion. If the shoreline retreats to the seawall, the location of the seawall

determines the minimum allowable shoreline position. If erosion takes place

beside a seawall (flanking) , various changes in the shoreline position might

occur depending on the characteristics of the seawall and the incident waves.

If flanking of the seawall is not possible (see Figure 38) , the solution for

the plan shape of an eroded shoreline will be the same as for erosion

downdrift of a groin (Equation 64, with opposite sign). In this case, the

seawall is functioning as a semi-infinite structure.

60



SEAWALL

Figure 38. Definition sketch for a semi-infinite seawall for
which no erosion occurs behind the seawall

80. Figure 39 illustrates the case of erosion at the side and behind a

seawall, i.e., flanking of the seawall. This must be solved as a coupled

problem. The incident breaking wave angle is
oz

outside the seawall and

a . behind it. Wave energy is transported behind the seawall by the process

of diffraction.

SHORELINE

Figure 39. Definition sketch for a semi-infinite seawall
for which erosion occurs behind the seawall
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81. The ratio between the amplitudes of the longshore sand transport
2

rate in the two solution areas will be denoted as 6 (= Q ,/Q „). Mathemati-
ol oz

cally, the situation is formulated as

1
a

2
9x

3t
x < (84)

til
1

a
2

9x

3y,

3t~
x > (85)

yi
(x,0) = y

2
(x,0) = (86)

3x ol r2 o2 .2 9x
x = (87)

y
l

= y
2

x = (88)

yi
= o

y
2

= (89)

It is assumed that the border between the two solution areas at x = is

stationary in time, although it moves somewhat in the x-direction as time

evolves. The solution is (for details, see Appendix D)

y^x.t) =

1

ol r 2 o2

1 +

2 /
: . t -x /4e .

t

+ x erfc

2/^7
(90)

for t > and x ^
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y
2
(x,t) =

ol r 2 o2

(91)

for t > and x > .

The quantity a represents a mean diffracted wave angle behind the seawall.

The solution in nondimensional form is presented in Figure 40 (expressed in

terms of the coastal constant e i)-

-2 -1.5 -1 -0.5 0.5 1

ALONGSHORE DISTANCE (x/L)

Figure 40. Shoreline evolution in the vicinity of a seawall
where erosion and flanking may occur behind it (a =0.2 rad ,

a „ = 0.4 rad , 6 = 0.6) '

!

o2

82. A characteristic length L is chosen to normalize the shoreline

position. In Figure 40 the time has been normalized by use of the quantity

L
2
/e

l
.

Shoreline Change at a Jetty, Including Diffraction

83. In the shadow zone of a long groin or jetty, it may be an
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oversimplification to neglect the process of wave diffraction. Consequently,

although Equation 64 (with reversed sign) may give a satisfactory description

of shoreline evolution at some distance downdrift of a jetty, in the vicinity

of the jetty this solution does not represent what is commonly observed. Ero-

sion just behind the jetty will be overestimated if diffraction is neglected

since the wave height is assumed to be constant alongshore. Accordingly, by

allowing a variation in wave height (and thus in the amplitude of the sand

transport rate) in the shadow zone, a more realistic description of shoreline

change will be obtained.

84. There are a number of ways to account for a varying amplitude in

the longshore sand transport rate (resulting from varying wave height) . One

way is to assume that, outside the shadow zone, the incident breaking wave

angle and the amplitude of the sand transport rate are not influenced by the

jetty. In the vicinity of the jetty, Equation 11 may be used to account for a

variation in the amplitude of the sand transport rate. An alternative way is

to divide the shadow region into distinct solution areas, each having a con-

stant amplitude of the sand transport rate. The incident breaking wave angle

may also be varied from one solution area to another. With this procedure, a

coupled system of equations is obtained which involves intensive calculations

for even a small number of solution areas. If the simple case of two solution

areas (one inside the shadow zone and one outside) is considered, the mathe-

matical formulation is the same as for a detached breakwater. However, the

incident breaking wave angle outside the shadow region is not zero (in which

case no sand transport would occur) but has a finite value. Therefore, the

boundary condition on continuity in sand transport across the border between

the two solution areas takes the following form:

8y
l 1 1

8y
2

-r-L =<x- i--a+±T
-—^ (92)

9x ol r2 o2 .2 3x

2
where 6 is the ratio between the amplitudes of the sand transport rate in-

side and outside the shadow region. The analytical solution to this problem

is formally identical to Equations 81 and 82, except that certain constants

are different. The following substitutions should be made in order to apply

Equation 81 and Equation 82 to the diffracting jetty case:
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6a
ol

a
2 +" 6 a

ol
+ a

o2

6 + 1
l

6(6 + 1)

.2
o a ,ol

A
2

-o a , + a
ol oz

(6 + l)
2

(6 + l)
2

(93)

(94)

85. If a „ is zero, the expressions on the right side reduce to those
o2 °

on the left side. As can be seen from Equations 81 and 82, even though the

description involves only two solution areas, the governing equation is

already quite complex. Generalization to an arbitrary number of solution

areas is straightforward, in which case the situation is mathematically ex-

pressed for the i area as follows (see Figure 41):

.2
9 y

±
zy

±
x < x < x.

. ,
(95)

i 2 at 1
_ _

i+1
3x

ix~
=

°oi " ~2 a
oi+l

+
72 IF- x = x

i+l
(96)

3y
i-i l i

9y
i

ax— = a
oi-i - ~r~ a

oi
+ -j- ^r x = x

i
(97)

6
i-i

6
i-i

y
i

= yi+ i
x = x

i+ i
(98 >

where

.2 %i_
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Figure 41. Definition sketch for shoreline evolution
downdrift of a jetty for which a finite number of

solution areas is used to model diffraction

For the first and last solution areas, other conditions prevail on the outer

boundaries, such as no sand transport at the jetty, and y = as x -* +°° .

86. Extremely complex algebraic manipulations are associated with the

analytical solution of coupled systems with several solution areas. In Fig-

ure 42 the solution is presented for two areas, with a ,
= -0.1 rad ,

ol

a ~ = -0.-4 rad , and 6 =0.5 .

o2

87. The solution for an arbitrary number of distinct areas is outlined

in Appendix E. In Figure 42 are plotted shoreline positions normalized with

the length of the shadow region. The length of the geometric shadow region is

B = L tan (a ) , where L is the jetty length and a is the incident

breaking wave angle in the illuminated region.

88. If the amplitude of the longshore sand transport rate is considered

to be a continuous function of x in the shadow zone, Equation 11 is appli-

cable. However, this equation is quite complex, and it is difficult to find

analytical solutions even if very simple functions are employed. The related

case, in which the incident breaking wave angle is a continuous function of
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Figure 42. Shoreline evolution in the vicinity of a groin
for variable sand transport rate conditions (two solution

areas; 6 = 0.5 a ,
= -0.1 rad

ol
a _ = -0.4 rad)
oz

x , is easier to treat analytically and provides interesting solutions,

these circumstances, Equation 11 will take the following form:

Under

a 2 i a da
o y _ 1_ oy o

. 2 "
e 3t dx

dX
(100)

in which a is a function of x only. This is formally the same equation

as that describing heat conduction in a solid containing a finite source.

Consequently, if a grows linearly with x (a = x<* /B) the situation will

be identical to the one describing a river mouth of finite length which dis-

charges sand at a constant rate. Equations 55 and 56 are the solutions to

this case, with reversed sign and q_. replaced by a /B . The solution is
R m

presented in Figure 26 in dimensionless form.

89. If a is different from zero at the jetty, but still grows lin-

early along the x-axis in the shadow zone, the variation in breaking wave

angle will be

a = a + /a - a \ —
o v ^ H vj B

(101)
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in which a is the incident breaking wave angle at the ietty, and a„ is
v H

the angle in the illuminated region. The mathematical description for this

case is almost the same as for a river mouth of finite length which discharges

sand but with a modified source term. This is a coupled problem containing

two solution areas but with a boundary condition at the jetty given by

9x
= tan a (102)

The analytical solution to this problem is (see Appendix F)

YjCx.t) =

(a
H

- a
v
)et

„.2 / B - x \ ,
.2 / B + x

2i erf c I + 2 1 erf c ( |
- 1

2/et 2/et

- tan a \ir '

-x"/4et
- x erfc

2 /Ft
(103)

for t > and ^ x ^ B

y2 (x .t)

(a
R

- a
v
)et

o- 2 e / x + B \ „ .2 . /x - B
2i erfc ( )

- 2 i erfc
2/et 2/et

- tan a \? (

-x /4et
- x erfc

2/et
(104)

for t > and x > B .

The quantity B is the geometric length of the shadow zone as before. In

Figure 43, the dimensionless shoreline evolution is presented for the specific

case of a = -0.1 rad and a„ = 0.4 rad . Shoreline position has been
v H K

normalized by the length of the shadow region.

90. Another case that allows a fairly easy analytical solution is ob-

tained by assuming that the incident breaking wave angle varies exponentially

with distance from the jetty according to
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a = a (l - e
"Yx

)o m\ /
(105)

Here, the quantity Y is a coefficient describing the rate at which the

breaking wave angle approaches the undisturbed value a along the x-axis.

-0.1-
^-^^^ t

'
= .<*^-^^^

3»

O -0.2-

M
eno
a.

u
2 -0.3-

_]uKOx
en

V^ 0.8^-^ y/

1 .2^^ ./

B2
1.6^-^ /

-0.4^
2.0^/

-0.5 H

RLONGSHORE DISTANCE (x/B)

Figure 43. Shoreline evolution behind a jetty with linear
variation in breaking wave angle in the shadow zone

(a = -0.1 rad ,
a = 0.4 rad)

V H

The derivation of the analytical solution is presented in Appendix G. The

solution is

a y

y(x,t) = -j-
,/eT -x

2
/4et

, . x g / x \

,
1 -Yx + etY e I x /—

\

+ -= e erfc
(

Y^et I

Y
2

\2/it /

1 Yx + £tY
erfc

2 /it
+ Y^et

a / 2 \
+ -= e"

YX
(l - e~

Y £t
) (106)

for t > and x ^
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If a dimensionless quantity yL is introduced, the solution may be displayed

efficiently in dimensionless form (Figure 44) . For large values of y » Equa-

tion 106 approaches Equation 64, which is valid for a jetty and constant

oblique breaking wave angle.

alongshore: distance (*/b)

Figure 44. Shoreline evolution behind a jetty with
exponential variation in breaking wave angle

(a = 0.4 rad , vL = 1)
m

91. The solution obtained for a variable breaking wave angle over-

estimates the rate of erosion behind the jetty since it is assumed that the

amplitude of the longshore sand transport rate is everywhere the same (and

thus that the wave height, in principle, is constant). In reality, diffrac-

tion reduces the wave height in the shadow region and, accordingly, the ampli-

tude of the longshore sand transport rate there. Despite this reduction,

Equations 103 and 104 provide a better description of the actual situation

than the commonly used solution (Equation 64) for which maximum erosion will

always appear immediately adjacent to the jetty or long groin.
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APPENDIX A: A SHORT INTRODUCTION TO THE LAPLACE
TRANSFORM TECHNIQUE

1 . The Laplace transform is a powerful technique for solving linear

partial differential equations. This technique allows the target partial dif-

ferential equation to be converted to an ordinary linear differential equation

in the transformed plane for solving one-dimensional problems in space. The

Laplace transform of a function y is denoted as L{y} and is defined by the

operation:

L{y} = y = / y(x,t) e"
st

dt (ai)-/y(x,,

o

The over bar denotes the transformed function. The transform of a derivative

of a function with respect to time is

{£}
== sy - y(x,0) (A2)

This relationship may be derived by performing a partial integration of Equa-

tion Al. The term y(x,0) represents the initial conditions for the system.

Accordingly, the transform of the diffusion equation may be written (if, with

the convention y(x,0) = , that is, a shoreline which is initially parallel

to the x-axis)

:

& - f y = (A3)

dx
E

The general solution of this homogeneous linear differential equation is

y = Ae
qX

+ Be"
qX

(A4)

where

2 s
q =-

Al



2. The coefficients A and B are determined by the transformed

boundary conditions and are, in general, functions of the parameter s . To

obtain a solution in the time domain, Equation A4 has to be inverse trans-

formed. This can be accomplished using tables of known transforms (see, for

example, Erdelyi et al. (1954) and Abramowitz and Stegun (1965))* or the

Fourier inversion theorem which states

5+1;

" y(s) ds (A5)

£~-io°

5+lco

1 f st

-3H J
e

The integration is performed as a line integral in the complex plane, for

which 5 is taken sufficiently large to have all singularities of the func-

tion y(s) lying to the left. Equation A5 is normally evaluated by means of

the residue calculus. If several solution areas are used, the solution within

each area is of the form of Equation A4 . The solutions are dependent upon

each other through their common boundaries (as an example see Appendix E) by

the prevailing boundary conditions.

3. Table Al presents a short summary of selected applicable transforms

useful for solving the diffusion equation.

* References cited in the Appendix can be found in the References at the end
of the main text.
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Table Al

Short Table of Laplace Transforms of Functions Often

Encountered in Solving the Diffusion Equation

y(s) y(t)

-ix

(fe)

1/2 2,. .

-x /4et

-qx

erfc
2/ET

j-qx

qs

,M
1/2

-x
2
/4et

2 I ^— J e - x erfc(?)
\2/ilj

-qx

1+1 /2n
,.,l/2n .n _
(4t) i erfc

V2/FF/

n = 0, 1, 2.

e~
qx

q + h (fe)

!/2 2 // . u u2-x /4et , hx+eth
e - hee erfc

2/et

+ h/et

qs

e'^ 2/et\
(q + h) h \n )

1 /? ?
-xV4et /l + hx

erfc

2/et

,
1 hx+eth - / x , , r—

H = e erfc
j

+ h/et
h' \2/eT

h is an unrestricted constant

A3





APPENDIX B: SHORELINE EVOLUTION DOWNDRIFT OF A GROIN WITH
BYPASSING REPRESENTED BY AN EXPONENTIAL FUNCTION

1. Sand is transported past the groin according to the following

relationship:

Q = QB
(1 - e"Yt ) (Bl)

Here Q denotes the maximum bypassing sand transport rate which occurs at

the groin, and y is a rate coefficient describing the rate at which the

limiting value Q is approached in time. Using Equation 8, the boundary

condition at the groin is written:

jx
u
o 2 Q

^ = a_ - "^ (1 - e"^) x = (B2)

Consequently, the mathematical statement of this case is, together with the

above boundary condition:

2

2 at
(B3)

3x

y(x,t) =0 x + ex, (B4)

y(x,0) = (B5)

2. By using the Laplace transform technique, an ordinary linear differ-

ential equation is obtained:

,2-
d y s — _y = (B6)

dx'
2 e

where y denotes the transformed function of y . The transformed boundary

condition is

Bl



dx s 2 Q \ s s+Y/ (B7)

Solving Equation B6 together with Equations B4 and B7 yields

y = -
l a - 1

QB \ e"
qX

1
QB e"

qX

o 2 Q / qs 2 Q q(s + y)
(B8)

i.
2 s

where q = —
E

3. The inverse Laplace transform of the first term in Equation

found to be (Appendix A)

is

1 / 1
Qb\/„ fit -x

2
/4Et . x

y = - I a - o" 7T" I I
2 V — e ~ x erf c (B9)

The second term is evaluated by applying Duhamel's theorem (Carslaw and Jaeger

1959, p. 301) which reads

( T )f
2
(t - x)d T \ = L{f

L
(t)} L{f

2
(t)} (BIO)

in which L{} represents the Laplace transform operation. The second term of

Equation B8 yields, after some rearranging,

2
y =

n i
— &

e 2 2
I, r

2
YC -x /4eC

dC (Bll)

Accordingly, the complete solution is
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y(x,t) - o -iJ y¥^-x /4et
- x erfc

2 /Ft

n/f^/
c 2 2 U r

2
y% -x /4e£

cK (B12)

4. The last term on the right side of Equation B12 describes a tran-

sient which disappears with time. After the effect of the transient term has

vanished, the solution for shoreline change downdrift of a groin will be the

same as the solution obtained without bypassing but with a modified breaking

wave angle. If Q_ < 20 a erosion will take place; whereas if Q„ > 20 aBoo XB o o

there will be accretion.
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APPENDIX C: SHORELINE EVOLUTION BEHIND A DETACHED BREAKWATER

1. In Figure 35 (in the main text) a definition sketch is shown for the

case of a detached breakwater and normal incident waves. The shoreline

evolution is symmetric about the centerline of the detached breakwater; thus,

only half of the problem domain needs to be considered. Since the amplitude

of the sand transport rate Q and the incident breaking wave angle a are

different behind the breakwater and outside the breakwater, two solution areas

are required. Mathematically, the shoreline evolution is described by Equa-

tions 74-79. After the Laplace transform technique is applied, the following

system of ordinary linear differential equations is obtained:

a
2
?

y. = -L < x < (CI)

dx
2 £

1
n

*\ s -—
2
- - - y2

= x > (C2)

dx 2

dy, tan a ,
1 _ ol_

dx s
x = -L (C3)

y 9
= x * » (C4)

y
x

= y
2

x = (C5)

dYi Q o dy„ a ,— = —— + — (C6)
dx Q , dx s

ol

CI



in which y and y denote the transformed shoreline position corresponding

to the regions behind and outside the breakwater, respectively, and L is

half the length of the breakwater. Solving the system of equations subject to

the boundary conditions yields

x q
l

X
6aol e

l
r . / x^r ^r +

L

6 cosh
(
q

i
x

)

- sinh (v)

6a
tan a

ol
-q

x
L

ol 6 + 1

q.s(6 sinh q^ + cosh q.L)
-L < x < (C7)

6a

3S - - ol

-q 9 x

6+1 q,s

6a
tan a

ol
-q

x
L

ol 6 + 1

-q x

6e

q
1

s(6 sinh q.L + cosh q.L)
x > (C8)

where

6

"^o2
q

i

=
I7 qo

- (C9)

2. The inverse transform of Equations C7 and C8 may be obtained by use

of the Fourier inversion theorem (Appendix A) or by expanding the denominator

in a Taylor series and finding the inverse transform of each term in the

series. The latter method will be used here. The denominator may be

rewritten as

q
x
L

q.s(6 sinh q^ + cosh q L) = - q s e (6 + 1) -(m)
-2q

1
L

(CIO)

The last term in Equation CIO is expanded in a Taylor series according to

-2q.L
-1

n -2q nL
1 - \ttt) e = Z {T-n) e (Cll)

n=0

C2



3. Only the inverse transform of Equation C8 will be obtained here to

illustrate the procedure. The inverse transform of the first term in

Equation C8 is (noting that q„ = 6q,)

6a

y-y
- ol „ /—- , / fix

2/e,t lerfc
6 + 1 1

/2l~t
(C12)

in which the function ierfc is defined according to Equation 23. The second

part of Equation C8 is rewritten by using Equation Cll:

-q,(6x+L)

y
2

= 2
iTrltan

°oi "m e
J—q^— 2 Utt) e

X n=0

(C13)

Rearranging Equation C13 by moving terms inside the summation gives

-2 6 tan a-^^i (m)
-q

1
[L(2n+l)+6x]

q.s
n=0

* 2o a
- 2

(6 + 1)̂
2
n=0

\s + 1/

-q. [2L(n+l)+6x]
n 1

q.s
(C14)

This expression is inverse transformed term by term (Appendix A) . The solu-

tion is

2 o
Yo " 2

6 tan a11 i* i ^—i^1
n=0

(frr) 2/F
i
T ierfc

6x + L(2n + 1)

2/^t

.2
o a

- 2

(6 + 1)̂
2
n=0

(frr) 2/F
i
T ierf£

6x + 2L(n + 1)

2/^t

I

(C15)
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The complete solution to Equation C8 is written as

6a
oly= — 2v£ t ierfc

2 6+1 - VL
i
z

2/e t

+ 2

in a . r-

+ i L.
n=0

/6 1 \
n

V"6-TTJ
2/V ierf<

6x + L(2n + 1)

2/E.t

* 26 a
- 2

(6 + 1)̂
2
n=0

(ttt) 2/V ierfc
6x + 2L(n + 1)

2/e t

(C16)

In the same way, Equation C7 may be inverse transformed, resulting in

Equation 81 (main text)

.
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APPENDIX D: SHORELINE EVOLUTION IN THE VICINITY OF A SEAWALL
WHERE FLANKING OCCURS

1 . Two solution areas are employed to describe flanking of a semi-

infinite seawall, one area behind the seawall and the other away from the sea-

wall. The amplitudes of the sand transport rate are denoted as Q . and Q „
ol oz

in the respective solution areas, and the corresponding incident breaking wave

angles are denoted as a , and a ~ . The incident breaking wave angle
ol oz ° °

a , behind the seawall (solution area 1) should be interpreted as a repre-

sentative mean value related to the sand transport rate. Equations 84-89

(main text) constitute the mathematical formulation of shoreline evolution in

the vicinity of a seawall subject to flanking. The Laplace transformed system

of equations and the boundary conditions are

d
2
7

y. = x < (Dl)

dx 1

d
2
7—y- ~ f" Yo = x > (D2)

dx
E
2

y
1

= x * -co (D3)

y 9
= x + co (D4)

y
x
= y2

x = o (D5)

dy
l 1

dy
2 / 1 \ 1

dx- =
^2 dx-

+ Kl "^2 a
o2J I

Dl



2. Solving the system of ordinary linear differential equations subject

to the boundary conditions yields

q.x

yi
=

ol .2 o2 1
o

1 + v
1 q,s

x < (D7)

i
,

- * a „ -q. 6x
ol .2 o2 1

6 e
J
2

1 +
1 QiS

x > (D8)

3. The inverse transforms of Equations D7 and D8 are (Appendix A):

6a. - a „
ol o2

'l
" &(& + 1)

'e. t -x Ae. t

+ x erfc
2/e.t

(D9)

x <

Vo "
6 a -a

ol o2
2 6(6 + 1)

*2 2/.
t -6 x Me t

- 6x erfc
6x

2/e t

(D10)

x >

D2



APPENDIX E: SHORELINE EVOLUTION DOWNDRIFT OF A JETTY IF AN ARBITRARY
NUMBER OF SOLUTION AREAS IS USED TO MODEL DIFFRACTION

1. The area downdrift of a jetty is divided into N distinct solution

areas of assumed different sand transport properties. In an arbitrary solu-

tion area j , the amplitude of sand transport rate is denoted as Q . and

the incident breaking wave angle as a . . The shoreline evolution is denoted

as y. in the solution area bounded bv the shoreline coordinates x and

x... . Equations 95 to 99 (main text) mathematically describe the shoreline

evolution in one solution area. Using the Laplace transform technique, the

governing equations take the following form:

d
2
y.

-J- -
f- y - (El)

dx j

y. = yj+1
x = x.

+1 (E2)

yj = yj.i * = Xj CB3)

dx j-1 dx V °J J-l oj-1/ s

X = X .

J

(E4)

dyj+ i -o *y

dx
= fi2 r1 + (

a
-a.i - s2a •) - (E5)

j dx \ oj+1 ] o]/s v -"

X = X
j+ 1

El



where

6 - ^SJ- (E6)

The solution to the ordinary linear differential Equation El is

q.x -q .x

y. = A.e -1 +B.e J (E7)
J 3 3

where.

q? =
f-

(E8)
J

3

in which A. and B. are constants to be determined through the boundary
3 J

conditions. Since the shoreline evolution in each solution area is connected

via the boundary conditions with the neighboring areas, an equation system

with 2N unknowns (two constants for every solution area) is obtained. The

boundary conditions E2 and E3 give the following relationships:

q.x. -q.x. q. .x. -q._.x.
A.e J J + B.e J J = A.

,
e 3 J + B. . e

3 J (E9)
J 3 3-1 J-l

A.e^ 1
+ B.e"^ 1

= A.,/*^ 1
+ B^.^1^ 1

(E10)
J J j+1 3+1

2. Furthermore, Equations E4 and E5 give

q.x. -q.x
qi-l

x
i

"q i-l
X

i
B
i-1

A
4 e

J J - B.e J 2 = 6. ,A. ,e 2 l J - 6. ,B. ,e J 2 + -2-1 (Ell)
j j 3-1 J-l 3-1 3-1 q^s
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A
qj+l

x
j+l _ - q3+l

x
3+l , .

q
3

x
3+l , _

-
q
j

x
j+l ,

6
jA.,,e -B.,,e J =6.A.e JJ - 6 . B . e JJ

3+1 3+1 J 3 3 2 qj+ l
S

(E12)

where

5 .
= a ... - 6 .a .

3 oj+1 j oj
(E13)

3. Equations similar to E9 to E13 may be written from solution area 2

to solution area N-l . In the first and last solution areas, two other con-

ditions prevail at the outer boundaries, namely, no sand transport in the

first solution area (area 1) and no shoreline change as x->°° in the last

solution area (area N) . The Laplace transforms of these boundary conditions

are

dyj

dx
= tan a

ol
x = (E14)

% = (E15)

A. Equation E15 implies that the constant A^ is zero. The resulting

system of equations to be solved in order to determine the value of the con-

stants is conveniently written in matrix form. A general system of N solu-

tion areas gives rise to 2N - 1 equations as follows:

4 1"2 ''2*2

qN-l
x
N ,

qN-l
x
N ~qN*N

6 6
N-l

e

— —
A

l

tan a
ol

q,s

B
l

A
2

8
1

q
2
s

B
2

x °

V-i

BN-2

V-i

B
N

%-l
qN

S

(E16)
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It is seen that the solution corresponding to even a small number of solution

areas involves intensive algebraic calculations. Furthermore, the inverse

transformation is difficult to perform, necessitating use of the Fourier

inversion theorem.
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APPENDIX F: SHORELINE EVOLUTION BEHIND A JETTY FOR
LINEARLY VARYING BREAKING WAVE ANGLE

1. In the case of shoreline evolution behind a jetty for lineraly

varying breaking wave angle, the amplitude of the sand transport rate is

regarded as constant downdrift of the jetty, and the incident breaking wave

angle varies linearly from the jetty (with value a ) to the value a in the
v H

region undisturbed by the jetty. Two solution areas are needed for describing

shoreline change, one in the shadow region and the other outside the shadow

region (illuminated area). Equation 101 (main text) describes the variation

in breaking wave angle in the shadow region which is of length B . The

Laplace transformed equations and boundary conditions are

d
2
7,

dx

s —
- 7 7i

"

&<
dx

" T Yo =

< x < B

x > B

(Fl)

(F2)

dx

tan a

x = (F3)

y
l

= y
2

x = B (F4)

dy
1

dy
2

dx dx
x = B (F5)

2. The solution to this system of ordinary linear differential

equations is

2B

-q(B-x) -q(B+x) tan a e

qs

-qx

Fl

(F6)



y-> 2B

-q(x+B) -q(x-B)
e~

qx

v qs
(F7)

where

(F8)

3. Equations F6 and F7 are easily transformed term by term (see

Appendix A) to yield Equations 103 and 104 (main text).
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APPENDIX G: SHORELINE EVOLUTION BEHIND A JETTY FOR EXPONENTIALLY
VARYING BREAKING WAVE ANGLE

1. The breaking wave angle varies exponentially with the distance be-

hind the jetty from zero at the jetty to the undisturbed value a far from
m

the jetty. The mathematical formulation of the boundary condition at the

jetty is expressed by Equation 105 (main text). A varying breaking wave angle

along the x-axis is described in terms of the diffusion equation by a distrib-

uted sink with a decaying strength with distance. The transformed equation

and boundary conditions are

,2- a y
d y s_ — m
.2 e

y " s
dx

iz =

x > (Gl)

dx ° x " ° <G2 >

y = x * - (G3)

The solution to Equation Gl is

2 -qx -yxaye a ye

y = " —T2 2\
+
"J! 2\

(G4)

qs(j - q J s(j - q )

Equation G4 may be written as partial fractions:

-qx
a Y e

Vq - Y q + y/ Y
\ s

_ y\ a)y = —2&- ^^^ ~ ^^> ~ "^— 1—^^ " rl (65)

In Equation G5, the last term may be inverse transformed to yield

6 - ^)
-yx

Ct 6

y
2 = JLir V

Gl



2. The first part of the first term is inverse transformed according to

Appendix A and gives

la m
a y

2 'et -x /4et / 1 - yx
,^- e -(— )

erfv
:-
i^-YX+ety- erfc (

_x_ _ jg\
2/eT /

(G7)

In the same way, the inverse transform of the second part of the first term in

Equation G5 gives

lb m
a y

2 let -x /4et /l + yx

y X ir

erfc
2/eT

+ 1 e^
X+etY

2

erfc /-i- + y/eT^j

y
2 \2/^ /

(G8)

3. The complete solution consists of Equations G6, G7, and G8 as given

by Equation 106 (main text)

.
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APPENDIX H: NOTATION

a Length (m)

A Amplitude of periodic beach cusps (m)

2A Cross-sectional periodic beach area (m )

A, B Constants in general functions of the Laplace transform variable

B Length of shadow region downdrift of a groin (m)

Cg, Wave group velocity to breaking point (m/sec)

D Depth of closure (m)

erf Error function

f(x) Arbitrary initial shoreline shape (m)

2
g Acceleration of gravity (m /sec)

h Constant

H , Significant breaking wave height (m)

i Integer number

ierfc Integral of the error function

k Slope of a line segment

K Nondimensional constant

L Geometric length (m)

L{y} Laplace transform of a function y

L Nondimensional groin length

m Integer number

n Integer number

N Number of solution areas or reaches

p Pitch height of a circle segment (m)

P Loss percentage from a beach fill

q Sand transport rate per unit length of beach from a source or sink
3

(m /m/sec)

q Constant sand discharge from a river acting as a point source
3

(m /sec)

qR
Time variable sand discharge from a river acting as a point source

(m /sec); constant sand discharge from a river with a finite mouth

(m /m/sec)

q Amplitude of sand discharge from a river acting as a point source

2

(m /sec)

s/e

HI



3
Q Longshore sand transport rate (m /sec)

3
Q Maximum value of bypassing sand transport rate (m /sec)

3
Q Amplitude of longshore sand transport rate (m /sec)

s Laplace transform variable

t Time (sec)

t' Dimensionless time

t Time when bypassing of a groin starts (sec)

t Time (sec)

t Time (s)
s

t Time in the matching solution when groin bypassing starts (sec)

t A Modified time in matching solution (sec)

T Time period of an oscillation (sec)

3
V Volume of sand released from an instantaneous source (m )

W Distance between two groins (compartment length) (m)

x Space coordinate along axis parallel to trend of shoreline (m)

x' Dimensionless alongshore distance

x Distance alongshore (m)

y Laplace transform of a function y

y Shoreline position (m)

y
1 Dimensionless shoreline position

y Geometric length

z Integration variable

a Angle

a. Angle between breaking wave crests and shoreline

a Angle between breaking wave crests and coordinate axis

6 Constant

Y Rate coefficient (s or m )

6 Ratio between the amplitudes of longshore sand transport rate in

two neighboring solution areas

A Change in quantity
2

e Coastal constant (diffusion coefficient) (m /sec)

£ Integration limit in the complex plane having all singularities of

the integrated function to the left

A Porosity of sand

£ Integration variable
3

p Density of water (kg/m )

H2



3
p Density of sand (kg/m )

a Wave number of periodic beach cusps (rad/m)

t Integration variable

<f>
Phase angle

(jj Angular frequency (rad/sec)

Subscripts: Denoting various specific values of a variable or various
solution areas

1, 2, 3...

i, j , m

H, v

Superscripts: Denoting various specific values of a variable or various
solution areas

1, 2, 3...

a, b, m, v

R, L

Mathematical symbols

d Differentiation

8 Partial differentiation

Absolute value

H3








