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Abstract
The coastal site of Ostend-Raversijde in Belgium is known for its archaeological artifacts, mainly

from Roman and medieval times. In recent years, detailed geophysical and geotechnical investi-

gations have been carried out here to test the efficiency of these techniques for geoarchaeolog-

ical prospection of the subtidal and intertidal zone. Very high-resolution 2D subbottom profiling

using a parametric echosounder evidenced a highly complex systemof paleogullies and tidal chan-

nels, some of which can be linked to the medieval peninsula Testerep and the drowned settlement

ofWalraversijde. For the first time marine seismic and terrestrial electromagnetic induction (EMI)

datawere fully integrated in the same intertidal area. Theparametric echosounder proved ahighly

effective tool to map the (partly excavated) peat layers and submerged landscape in high detail,

even in extremely shallow water. Using a novel multitransducer parametric echosounder (SES-

2000 Quattro), unique 3D imaging of the peat exploitation pattern was possible with unprece-

dented detail (submeter level). This sets a new standard for shallow water research and opens

important new perspectives for geoarchaeological studies in nearshore areas.
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1 INTRODUCTION

Shallow water environments are among the most dynamic elements

comprising coastal zones, subject to rapid sedimentary fluxes and a

prominent focus for human activities throughout (pre)history. How-

ever, these environments often posemajor technological problemsdue

to shallow water, fierce wave action, strong currents, and large tidal

range. Moreover, nearshore and intertidal areas are often marked by

the presence of shallow gas which may severely limit acoustic pen-

etration (e.g., Anderson & Bryant, 1990; Missiaen, Murphy, Loncke,

& Henriet, 2002a; Weschenfelder, Correa, Aliotta, Pereira, & De

Vasconcellos, 2006; Wilkinson & Murphy, 2009). As a result, these

areas are seldom investigated in a structured way, which is unfor-

tunate since such land-sea transition areas are known to be rich in

archaeological features (Bates, Bates, & Briant, 2007; Wilkinson &

Murphy, 2009). Indeed, recent data show that the vast majority of
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known submerged prehistoric sites on the continental shelf are found

in shallow waters (<10 m) (Flemming et al., 2014). However, these

shallow water areas are also an important focus for infrastructure

works (mainly related to coastal defense) which forms a major threat

to submerged cultural remains (e.g., Dugan, Airoldi, Chapman, Walker,

& Schlacher, 2011). It is therefore important to map and record this

unique archaeological heritage before large parts of it will indeed be

irreversibly lost.

Geophysical investigations, and in particular seismic imaging tech-

niques, are effective tools for obtaining detailed descriptions of the

shallow subsurface. Due to its reliability and resolving power, the

seismic method is a major investigation tool in marine environmen-

tal and geotechnical studies, and increasingly also in archaeological

studies (e.g., Fitch, Thomson, & Gaffney, 2005; Grøn, Jørgensen, &

Hoffmann, 2007; Missiaen, 2010; Missiaen & Feller, 2008; Quinn,

Cooper, & Williams, 2000). With an ever-increasing number of
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archaeological sites being discovered, the necessity for management

and preservation of underwater cultural heritage is recognized inter-

nationally (Flemming et al., 2014). It is nowadays well recognized

that buried artifacts are often best protected if left alone. Non-

intrusive high-resolution techniques capable of locating and identify-

ing archaeological remnants buried in the seabed, possibly also assess-

ing their state of preservation/decay, are therefore becoming increas-

ingly important.

The last decade has seen a significant development in very high

resolution seismic acquisition in shallow water environments (e.g.,

Baradello & Carcione, 2008; Missiaen et al., 2008; Wunderlich,

Wendt, & Müller, 2005). Careful attention with regard to source

and receiver, geometrical arrangement, and operational conditions

is crucial to obtain accurate images of the shallow subsurface (Mis-

siaen, 2005). However, seismic investigations alone are not always

able to provide all the answers. Different features, for instance

hard layers or fine-grained deposits, may sometimes yield a sim-

ilar reflectivity and can therefore be easily mistaken (Stevenson

et al., 2002). Integrated use of complementary methods is often

needed to provide optimal information on sedimentary architecture

and buried features, as shown by an extensive geophysical study

in The Netherlands at Verdronken Land van Saeftinge, an intertidal

marsh area in theWesterschelde estuary (Missiaen, Slob, &Donselaar,

2008).

Recent studies increasingly focusonprehistoric archaeology, in par-

ticular the impact of human activities on submerged terrestrial land-

scapes (e.g., Bates et al., 2013;Hijma, Cohen, Roebroeks,Westerhoff, &

Busschers, 2012; Laffert et al., 2006; Westley et al., 2004). The recon-

struction of paleolandscapes is not only an important requirement to

help understand their archaeological potential (such as submerged or

reworked material) but it may also provide key information on human

evolution. Sea levelswere generallymuch lower in the LatePleistocene

and early Holocen times, and only reached near-present levels during

the later part of theHolocene. Prime targets for seismic studies include

relief features suchasburiedpaleochannel systemsandassociated ter-

race features. Another good target is organic deposits such as peat

layers, since these are good indicators of past coastlines and show

a high preservation potential. More knowledge on the evolution of

islands and coastal barriers in thepast, how theywere formed, andhow

they disappeared, will moreover provide a better grip on future con-

struction works in the nearshore zone and the effects these will have

on the present coastline.

In Belgium little attention has been paid to submerged archaeo-

logical sites and remnants or submarine landscapes and (pre)historic

coastlines. Yet it is this submerged coastal landscape that provides

important and exciting windows on prehistoric and historic human

activities. In recent years, a number of investigations have been carried

out along the Belgian coast in order to test the efficiency of marine

seismic techniques for geoarchaeological prospection of nearshore

and intertidal areas. Themain test area is locatedatRaversijde, roughly

2 km west of Ostend (Fig. 1). This site is well known for its artifacts

and structures dating from prehistoric to medieval times, including

a Roman embankment, remnants of a medieval fishing village, and

intensive peat and salt exploitation (Pieters, Baeteman, Bastiaens,

Bollen, & Clogg, 2013). Most of these archaeological remains were still

visible on the intertidal beach up to 1970s but are now buried a few

meters below the sand due to extensive beach suppletion works and

the construction of groins.

F IGURE 1 Overviewmap of the study area (backgroundmap fromGoogle Earth c©). The red rectangle marks area of seismic investigations (see
Figure 2). The black line marks the (presumed) location of the medieval peninsula ‘Testerep’ and associated gully (modified after Zeebroek et al.,
2002). The exact seaward boundary of the peninsula is uncertain [Color figure can be viewed at wileyonlinelibrary.com]
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The main goal of the investigations described in this paper was

twofold: (1) to map paleochannels, submerged seafloor terraces, and

other buried structures in order to gain more insight in the late

Holocene evolution of the area (i.e., the last 5000 years), including

the drowned medieval peninsula Testerep; and (2) to identify small-

scale archaeological artifacts and relics of human occupation and/or

human activities. The main technique used was very high resolution

marine subbottom profiling (applied during high tide), which was com-

plemented by terrestrial electromagnetic induction (EMI) measure-

ments as well as cone penetration tests (CPT) and shallow cores

(obtained during low tide). The use of a novel multitransducer para-

metric echosounder allowed 3D imaging of the subbottom in very high

detail (dm resolution), and sets new standards for shallowwater geoar-

chaeological research.

2 HOLOCENE HISTORY OF THE STUDY

AREA

The study area of Ostend-Raversijde is located in the central part of

the Belgian coast (Fig. 1). The coastline here consists of a slightly sea-

ward sloping sandy beach (mean slope of about 1.7%), directly bor-

dered by a large dike behind which dunes locally stretch out. The

actual coastline has its roots in the Middle Ages, when huge embank-

ment activities were conducted. Shallow sediments are made up of

alternating sand, peat, silt, and clay layers that reflect the complex

history of the Holocene during which marsh-like environments, sand

dunes, and intertidal mud- and sand-flats alternated. Major control-

ling factors in landscape evolution were changes in sea level rise, pale-

otopography, accommodation space, and its balance with sediment

supply (Baeteman, Beets, & Van Strydonck, 1999; Beets & van der

Spek, 2000).

At the onset of the Holocene (ca. 11,000 cal. yr B.P.) the Belgian

coastline was located roughly 20–30 km offshore (Mathys, 2009). A

large dune barrier system protected the coastal plain which consisted

of a large (inter)tidal flat environment marked by constantly changing

tidal channels, tidal flats, and marshes (Beets & van der Spek, 2000;

Mathys, 2009) but also tidal basins such as the IJzer valley (Baeteman

et al., 1999). Initial rapid sea level rise (on average 7 m/ky) caused a

rapid inland shift, and by 7500 cal. yr B.P. the coastline had reached a

position close to the present-day boundary of the coastal plain (Baete-

man &Denys, 1997).

As sea level rise started to slowdown around7500–7000 cal. yr B.P.

(to an average 2.5 m/ky) the landward shift stopped; moreover, sedi-

ment supply now outran the creation of accommodation space by sea-

level rise and tidal gullies became rapidly filled (Baeteman et al., 1999).

Peat started to develop on former tidal flats which were now out of

reach of tidal flooding. Tidal channels shifted rapidly which resulted in

an alternation of thin peat layers and tidal flat deposits dated between

ca. 7800 and 5500 cal. yr B.P. (Baeteman et al., 1999).

Around 5500–5000 cal. yr B.P. sea level rise further slowed to

0.7 m/ky, and due to a lack of accommodation space the shoreline

started to prograde. The coastal plain changed into a freshwatermarsh

and a thick peat layer (so-called “surface peat”) was deposited (Baete-

man et al., 1999). Tidal channels filled with silt and served as drainage

for the freshwater marsh (Baeteman, 2005). After 3000 cal. yr B.P.

peat growth slowed. Tidal channels cutting through themarsh became

eroded, most likely by enhanced precipitation run off from the hinter-

land (due to climate change and deforestation) (Baeteman, 2005). At

the fringes of the tidal channels the peat eroded completely, causing

drainage and compaction of the peat layer and subsequent lowering of

the ground surface. This resulted in a significant vertical accommoda-

tion space for tidalwaters, and the freshwatermarshwas converted to

an intertidal area again.

During Roman times the sea was located a few km offshore from

today's coastline, sandy dunes protecting the marsh-like hinterland

which was crossed by creeks and silted-up gullies with low tidal activ-

ity (Baeteman, 2007). The coastal area was intensely exploited for salt

and peat, but permanent habitation at that time seems unlikely (Thoen,

1978). With the increasing influence of the sea (also enhanced by

local subsidence of the land related to peat excavation) and retreat of

Roman troops aroundA.D. 300, salt andpeat production largely ended.

During early medieval times gradual reclamation of the area started

and dikes were built (Tys, 2013). Together with artificial drainage and

renewed peat digging, this resulted in lowering of the land surface,

creating large areas vulnerable to flooding (Vos & Van Heeringen,

1997).

During the Middle Ages, the study area was part of a marsh-

like peninsula (so-called Testerep), separated from the mainland by a

large E-W oriented tidal gully (so-called Testerep-gully) (Zeebroek, Tys,

Pieters, & Baeteman, 2002) (Fig. 1). In the 13th century, the fishing set-

tlement of Walraversijde was established on the peninsula, close to a

local tidal gully or so-called Yde (hence the name) (Tys & Pieters, 2009).

Drainage works and peat exploitation lowered the land, and as a result

large parts of Testerep were flooded after fierce winter storms in the

late 13th and early 14th centuries, also partly destroyingWalraversijde.

The villagewas definitely abandoned in the15th century and relocated

behind a new dike (so-called Graaf Jans dike, see Fig. 2) (Tys & Pieters,

2009).

3 ARCHAEOLOGICAL ARTIFACTS

Since the late 19th century, many archaeological traces and structures

have been documented in the study area (Pieters et al., 2010). Prehis-

toric artifacts include a large number of flints ranging from 13,000 cal.

yr B.P. (final Paleolithic) to 4000 cal. yr B.P. (early Bronze period) (Choc-

queel, 1950; De Bie, 2013). One of the marked findings involves a

wooden paddle discovered in the surface peat layer, dated between

6300 and 2635 cal. yr B.P. (Baeteman, 2007; Pieters et al., 2013).

Roman artifacts include pottery and refuse pits but also numerous

remnants of peat and salt exploitation (Pieters et al., 2010; Thoen,

1978). In the 1930s and 1940s, remnants of houses (bricks and wood)

were documented on various locations of the beach at Raversijde. The

remnants were dated to the early 14th century and can most likely

be linked to the drowned fishing village of Walraversijde (Chocqueel,

1950). Other medieval artifacts found on the beach include coins and

ceramics (Pieters et al., 2013).
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F IGURE 2 Overviewmapof the seismic network (thin black lines) recorded atRaversijde.Groins aremarkedby thick gray lines. Theblack dashed
rectangle marks intertidal zone M with detailed 2D/3D seismic measurements and ground-truth data (see Figures 4 and 10). The short black line
marks the Roman dike fragment found inland. The black dashed line behind the medieval dike marks the extension of the relocated fishing village
[Color figure can be viewed at wileyonlinelibrary.com]

Large-scale archaeological investigations were conducted between

1992 and 2005 behind the Graaf Jans dike where remnants of the

re-located fishing settlement were discovered (see Fig. 2) (Pieters

et al., 2013). Remnants of a Roman dike (2nd century A.D.) were also

detected, roughly 12 m wide and 1 m high and with a total length

of 110 m (Pieters, 1993). The dike is built of stacked clay blocks,

reinforced on its western side by peat slabs. Its orientation, roughly

perpendicular to the coastline, suggests that it most likely embanked

a tidal gully stretching far inland. Similar stacked clay and peat blocks

were found on the beach in the 1970s (Pieters et al., 2010, 2013).

Unfortunately, the exact location remains unknown, so any link with

the Roman dike is therefore speculative.

3.1 Salt and peat exploitation

Artifacts related to salt and peat exploitation activities, discovered on

the beach at Raversijde, include remnants of extraction pits and trench

system (Fig. 3). The saltpans were occasionally lined by small wooden

poles (5–10 cmdiameter). In order to extract salt, an intricate drainage

system of trenches was constructed to guide seawater via trenches

through a number of shallow basins (saltpans) where the water slowly

evaporated, leaving behind a thick layer of salt. In order to boil the lat-

ter into salt blocks (so-called ‘’briquetage’’) a lot of fuelwasneeded, and

it seems most likely that peat was used as fuel for salt ovens, although

it may also have been used as source of salt since this peat had a high

salt content (van den Broeke, 1996). Radiocarbon dating of one of the

wooden structures related with salt production indicated an age going

back to the 1st century A.D. (Thoen, 1978).

Roman peat extraction pits found behind the present dunes at

Raversijde indicate that a peat layer, often a few cm thick, was left

intact at thebottomof thepit,most likely to prevent groundwater from

enteringand/ormixingoforganicmaterialwithmineralmaterial during

theextraction (Pieters et al., 2013). The fact that thepitswerenot filled

with waste (i.e., immediately after digging) but instead filled with tidal

sediments indicates the absence, at least locally, of an area in agricul-

tural use (Pieters, 1993). It is believed that these Roman peat extrac-

tion pits did not affect the pattern of newly formed tidal channels,

unlike the case in Zeeland where channels often followed the courses

of Roman artificial drainage (Baeteman, 2007; Vos & van Heeringen,

1997).

Investigations in the polder area of Raversijde indicate that peat

(where not excavated) generally occurs between −0.2 and +1.6 m

TAW (Belgian water level reference level "Tweede Algemene Water-

passing”), with a thickness ranging from 0.2 to 1.6 m. The top of the

peat often shows clear evidence of erosion. Vertical cracks reaching

the underlying sediments suggest a phase of total desiccation (Pieters,

Baeteman, Demiddele, & Ervynck, 1998). Radiocarbon dating of the

top of the peat yielded ages between 2207 and2744 cal. yr B.P. (Baete-

man, 2007). The peat is covered by a thin clayey deposit (<0.5m) and a

thick sequence of clay and sand (Pieters et al., 2013).

In the late 1970s, groinswere constructed at regular intervals along

the Belgian coast to protect the beaches from erosion. This resulted in

sand accretion, further enhanced by additional sand suppletion works

on the beaches. As a result, archaeological features are now buried

beneath a sand cover of at least 0.5–1 m thick, locally more. In recent

years, the beach of Raversijde is also used for controlled explosions of

old munitions (from WW1 and WW2) found on nearby beaches. This

forms a major threat to archaeological remains, and most likely these

controlled explosions are themain cause for large round pits observed

on old aerial photographs (see Fig. 3 bottom).

AdG
Texte surligné 
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F IGURE 3 Top: Remnants of peat digging exposed on the beach of
Raversijde around 1970. Bottom: Aerial photo of the beach at Raver-
sijde around 1970 showing different patterns of peat extraction. The
large circular pits are likely related to the impact of explosions (Photos
E. Cools) [Color figure can be viewed at wileyonlinelibrary.com]

4 DATA ACQUISITION AND PROCESSING

4.1 2D seismic data

Notwithstanding recent sand accretion, marine investigations in most

of the intertidal area were still possible due to large variation of the

local tide (4–5 m). A number of high-resolution 2D marine seismic

surveys were conducted between 2007 and 2014 at Raversi-

jde. Recorded data included a large-scale network in the subtidal

nearshore area (up to 1.2 km from the shore, line spacing 50–100

m, water depth 4–10 m) and a number of smaller scale networks in

intertidal zones between groins (line spacing ∼20 m, water depth ≤4

m) (see Fig. 2). It was hoped that these data could providemore insight

into the distribution of nearshore paleogullies and possible remnants

of ancient coastal defense structures. A detailed seismic survey with

5–10m line spacing (Fig. 4, left) was carried out in one of the intertidal

areas (area M, for location see Fig. 2) where peat exploitation was

expected based on old photographs.

2D seismic surveys were conducted with the SES-2000 parametric

echosounder (PES) (1). In recent years, this source has been used suc-

cessfully in a wide range of geotechnical, environmental, and archae-

ological studies (e.g., Missiaen & Feller, 2008; Missiaen, Demerre, &

Verrijken, 2012; Missiaen & Noppe, 2010; Zeebroek et al., 2009). The

source simultaneously transmits two signals of slightly different high

frequencies (typically 100 and 110 kHz) at high sound pressures; non-

linear interactions generate new frequencies in the water, one of them

being the difference frequency (between 6 and 14 kHz), which has a

bandwidth similar to theprimary frequency signal (100kHz) butwhose

low frequency allows penetration into the seafloor. The directivity of

the difference frequency has virtually no side lobes during transmis-

sion (Wunderlich et al., 2005). Penetration depth below the seafloor

can reach up to a few tens of meters in soft (mud rich) sediments,

whereas in sandier sediments it is often limited to 5–10 m (Missiaen

&Noppe, 2010;Missiaen et al., 2012).

Notwithstanding the small transducer size (∼20 × 20 cm), the PES

allows transmission of narrow beams with short pulse length at low

frequencies. This does not only result in a high vertical and horizon-

tal resolution (cm/dm range), but also increases the signal-to-noise

ratio for detection of weak reflectors (Wunderlich et al., 2005). The

narrow beam width (±1.8◦, independent of frequency) allows detec-
tion of small buried structures, whereas the short pulse length (0.07–

1 ms) allows to work in very shallow water (<1 m) (Wunderlich &

Müller, 2003). Contrary to conventional echosounders, which often

record only the envelope of the acoustic signal, the full waveform is

also recorded here. This allows detection of phase inversions (nega-

tive peaks in the reflectivity series), typical for the presenceof peat and

wood buried in fine-grained sediments (Bull, Quinn, &Dix, 1998; Plets,

Dix, Bastos, & Best, 2007; Quinn, Bull, &Dix, 1997). However, it should

be noted that a negative reflection coefficient can also be a sign of gas

accumulation (Judd &Hovland, 1992).

For the intertidal surveys a catamaran vessel with small draft was

used. The echosounder was attached onto an iron pole fastened to

the side of the ship. The fast pulse rate (up to 40 pulses/s), combined

with low vessel speed (2–3 knots), resulted in high lateral coverage

(data points every 5–10 cm in the inline direction). A motion sensor

was used to filter out wave movement. Positioning was done using a

DGPS antenna with an overall accuracy of 1–5 m. The echosounder

was operated with a low frequency ranging between 8 and 12 kHz

and pulse length of 100 𝜇s, which resulted in a vertical resolution

of 5–10 cm. Data processing was straightforward and included band

pass filtering, stacking (where needed), smoothing, and time vari-

able gain. Tidal correction was a crucial step and involved tide data

obtained from a nearby tidal gauge at Ostend and interpolated for

the survey area. All seismic data were corrected to a common level

(TAW). Time to depth conversion was done using a sound velocity of

1550m/s.

4.2 3D Seismic Data

Data acquisition as described above results in a 2-dimensional image

of the subseafloor. Through data interpolation a pseudo-3D image can

be constructed that may allow adequate imaging of large-scale fea-

tures (10–100 m in size) but which is insufficient for small archae-

ological artifacts or structures (≤1 m range). The latter can only be

imaged correctly using true 3-dimensional imaging. Such very high
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F IGURE 4 Detailed seismic networks recorded in the intertidal zone M (for location see Figure 2). Left: dense 2D network recorded in 2012
with the parametric echosounder SES-2000. Thick black lines mark the seismic profiles shown in Figure 9. Yellow circles indicate core and CPT
locations. Yellow arrows mark the two CPT/cores shown in Figure 11. Right: 3D networks recorded in 2015 with the multitransducer parametric
echosounder SES-2000Quattro [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Seismic profiles and interpreted line-drawings from the subtidal area showing (A) a breakwater construction (groin) and (B) associated
erosion pit. For location of the profiles see Figure 2. Depth inmeters TAW [Color figure can be viewed at wileyonlinelibrary.com]

resolution true3Dseismic imaginghowever is a complexoperation, not

onlywith regard to thedata acquisitionbut also theoften intensive and

time-consuming data processing (e.g., Gutowski et al., 2008; Marsset,

Missiaen, Noble, Versteeg, & Henriet, 1998; Missiaen, Versteeg, &

Henriet, 2002b; Müller et al., 2009). Moreover, in extremely shal-

low areas (<3 m water depth) application of VHR 3D seismics is

problematic due to physical constraints placed on sampling and posi-

tioning accuracy (Missiaen, 2005).

In recent years, a novel multitransducer parametric echosounder

systemwas developed (SES-2000Quattro) specifically designed for 3D

seismic applications with very high data density in very shallow water.

The system consists of four individual transducers fixed in a line array

(1). Total width of the array is 1 m (25 cm spacing between transduc-

ers), which implies a line spacing of ∼1 m to achieve full coverage.

Fix mounted transducers largely simplify volume rendering (3D) pro-

cessing, since time-consumingmigration and beam forming processing

are no longer required. Together with the relatively simple acquisition

(no complex floating platform) it makes this system particularly fit for

rapid, cost-efficient 3D site surveys in shallowwater (<15m). An addi-

tional advantage is the flexible configuration of the individual trans-

ducers, which also allows for a 2D single beam set-up (e.g., four trans-

ducers configured into a quadrangle and acting as a single transducer),

resulting in higher energy anddeeper penetration, or a pseudo-3Ddual

beam set-up (two transducers combined as a single transducer), which

will also increase the energy level and has an intermediate data density

(maximumwater depth∼20m).
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F IGURE 6 Seismic profile and interpreted line-drawing from the
subtidal area showing the step-like form in the seafloor topography
creating a distinct terrace. The foot of the terrace is marked by a shal-
low paleogully (locally two intertwining gullies) oriented parallel to the
shore (A), and small irregularities on the seabed (B). The depth of the
green reflector suggests a thin peat layer. For location of the profile see
Figure 2. Depth inmeters TAW [Color figure can be viewed at wileyon-
linelibrary.com]

InMay 2015, a test surveywas conductedwith themultitransducer

parametric echosounder (in 3D line array set-up) in intertidal zone M

at Raversijde (see Fig. 2). A line spacing of 1 m or less was envisaged

but this was difficult due to currents and waves, and therefore it was

decided to record two separate networks over the same area (dur-

ing two consecutive days) and afterwards merge the two data sets.

Total survey time involved was 6 to 7 hours. The multitransducer sys-

tem was operated with a low frequency of 10 kHz and pulse length

of 100 𝜇s, with a resulting vertical layer to layer resolution of 10 cm.

A recording window of 7 meters was used and each of the individual

transducers was operated with ∼ 17 pings per second. Simultaneously

recordedmultibeamdata allowed tomap the seafloor in highdetail and

detect possible exposed features.

Ultra-high resolution 3D data modeling requires highly accurate

navigationandpositioning. Therefore, a state-of-the-artmotion sensor

(Octans) with high update rate (50 Hz) was used in combination with

RTK positioning which allowed cm accuracy (x,y,z) with an update rate

of 10 Hz. Transducer, motion sensor, and GPS antenna offsets were

knownwith centimeter precision. During offline data processing, posi-

tional offsets were corrected by using the RTK data and true head-

ing sensor data. Two data volumes were recorded in intertidal zone

M (Fig. 4, right): a larger volume (3D area A) of roughly 200 × 80 m

in the nearshore part, and a smaller volume (3D area B) of roughly

100 × 60 m slightly more offshore. Thanks to the high line coverage,

a cell size of 25 × 20 × 1 cm was possible, although still some small

gaps small gaps remainedwithin the acquired data set as can be seen in

Figure 4.

4.3 Additional ground-truth data (cores, CPT, EMI)

In 2012, an EMI test survey was conducted on the beach at low tide

in intertidal zone M (Fig. 2) (Delefortrie et al., 2014). Previous studies

have shown the suitability of the EMImethod for the detection of peat

excavation in polder areas (e.g., De Smedt et al., 2013; Verhegge,Missi-

aen, & Crombé, 2016). For themeasurements at Raversijde, a Dualem-

21S sensor was used with three different coil sizes (depth penetra-

tion of the different coils, respectively, 0.5, 1, and 3 m). The sensor

was dragged over the beach by a four-wheel all terrain vehicle. Main

goal of this survey was to corroborate the presence/absence of peat in

the shallow subsoil (as peat is known to increase the conductivity). An

important step in the EMI data processing was to filter out the varia-

tion in salinity and/or groundwater level in the intertidal zone. More

details and information on this EMI survey are discussed in the paper

by Delefortrie et al. (2014).

Ground-truth for the geophysical data was provided by shallow

hand cores, using a combination of conventional augering devices (e.g.,

pulse) and a so-called “van der Staay” suction corer especially designed

for water-logged sandy sediments (Wallinga & van der Staay, 1999). In

all, 16 short coreswere obtained, with depths varying between 1.5 and

3.5m (average depth±2m). Coring on the intertidal beach proved very

difficult and time consuming, due to the variable lithology (dense peat

and clay layers interfingering with water saturated sand). As a result,

the quality of the core samples was often poor. No dating was done on

the core samples.

Electrical CPT were conducted at 13 locations (average depth

10 m). The (partially overlapping) location of cores and CPTs is

shown in Figure 4, left. The CPT probe measured cone tip resis-

tance (qc) and sleeve friction (fs). Both are related to soil type and

moisture content, and the ratio of sleeve friction and cone resistance

(friction ratio Rf) can be used to classify the soil (Lunne, Robert-

son, & Powell, 1997). In general, CPT logs allow good distinction
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F IGURE 7 Two seismic profiles and interpreted line-drawings from the subtidal area illustrating the complex pattern of paleochannels. For loca-
tion of the profiles see Figure 2. Depth inmeters TAW [Color figure can be viewed at wileyonlinelibrary.com]

between sand, clay, and peat deposits (Missiaen, Verhegge, Heirman, &

Crombé, 2015).

5 RESULTS AND DISCUSSION

5.1 Seafloor topography

On the whole, the seafloor topography is relatively smooth, except for

the groins which stand out clearly on themost nearshore subtidal seis-

mic lines (Fig. 5A). The groins are surrounded by wide erosion pits of

over 1 m deep which extend up to 100 m away on the seaward side,

indicating strong scouring effects (Fig. 5B).Minor erosion and accumu-

lation effects are also observed directly alongside the groins (Fig. 5A).

The seafloor topography shows a gentle slope that is marked by

a clear step-like form in the nearshore part (Fig. 6). The downslope

part of the terrace is occasionally marked by small irregularities in the

seabed (Fig. 6B). The latter are located slightly landward of the out-

cropping reflector that marks the base of the terrace. The top of the

terrace locally shows a slight dip that is most likely related to scouring

effects near the groins. The recent sediment cover that was deposited

after construction of the groins is clearly observed on the seismic data.

At the foot of the seafloor terrace a shallow, recent paleochannel can

beobserved that runs parallel to the shore. The channel locally consists

of two intertwined channels (clearly visible on Fig. 6). The depth of the

green reflector (at −2.2 m TAW) suggests that we may be dealing with

a thin peat layer, also observed in core 4/CPT8 (see Fig. 11 left).

It is tempting to link the seafloor terrace to construction of the

groins. However, the seismic data suggest a different (and likely much

older) origin, although it cannot be excluded that the groins have

increased the relief (amplitude) of the terrace. The seafloor terrace

seems more likely related to the medieval peninsula of Testerep, and as

such represents the shoreface of the former coastal barrier. The chan-

nel running at the foot of the terrace (Fig. 6A) may indicate a tidal gully

bounding the seaward edge of the peninsula. Indeed, it is known that

islands are often marked by strong tidal currents that “encircle” the

island (Pingree & Maddock, 1979). On a number of seismic profiles,

marked seafloor irregularities (Fig. 6B) can be observed slightly above
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F IGURE 8 Overview map of the main buried paleochannels identified on the seismic data in the subtidal and intertidal area (tentative map).
The tidal gully running parallel to the shore indicates the possible seaward boundary of the drowned Testerep peninsula. Light gray areas mark
irregularities observedon the seafloor.Greendashed rectanglesmarkareaswhere remnantsofmedieval houseswere foundon thebeach (modified
after Chocqueel, 1950). The green striped areamarks the location of the Yde gully proposed by Choqueel (1950). The red linemarks the location of
a tidal gully identified on the soil map [Color figure can be viewed at wileyonlinelibrary.com]

the foot of the terrace, suggesting some relation to the Testerep penin-

sula (e.g., possible remnants of former dikes?).

Until now the Testerep peninsula had only been proposed based

on (soil) studies in the polder area, specifically focused on the inland

Testerep gully (e.g., Ameryckx, 1956, 1959). The seaward exten-

sion of the peninsula still remained very uncertain. The paramet-

ric echosounder data from Raversijde present the first geophysi-

cal proof of the medieval coastline and the drowned peninsula of

Testerep.

5.2 Buried tidal channels

The 2D seismic data allowed to identify a complex pattern of pale-

ochannels, marked by numerous overlapping and interfingering chan-

nels, with younger gullies overlying older gullies at different angles

(Fig. 7). Due to the high spatial variability of the paleochannels and rel-

atively large profile spacing in the subtidal area (roughly between 25

and 100 m), it was not always possible to fully map the course of the

channels. The seismic datawere furthermore locally hamperedby shal-

low gas which limited the penetration of the acoustic signal. The gas

is believed to be of biogenic origin, produced by bacterial degradation

of organic matter, most likely related to organic-rich layers (Missiaen

et al., 2002a).

Figure 8 shows a (tentative) reconstruction of the main paleochan-

nels observed on the seismic data. Most channels in the subtidal zone

are oriented roughly perpendicular to the coast. Farther offshore

they seem to disperse and fan out. Toward the west two large tidal

channels stand out clearly. The westernmost channel can only be iden-

tified clearly on its eastern flank, shallow gas masking the western

extent of the channel. The tidal channel indicated on the soil map from

the coastal area (marked in red on Fig. 8) most likely presents its land-

ward continuation. The location of this channel, combined with earlier

archaeological observations on the beach (Chocqueel, 1950) (marked

in green on Fig. 6), suggests that we may be dealing with the Yde gully

that once bordered the settlement ofWalraversijde.

Also in the intertidal zones between the groins, a large number of

buried paleochannels were observed, but local gas and a strong, shal-

low seafloor echo (multiple) severely hindered the data interpretation

here. In the deeper part of the intertidal area, some of the observed

paleochannels seem to be running parallel to the shore. The channels,

often cutting through thepeat, couldpossiblybe related tooneormore

retreating stages of the Testerep peninsula. Despite the high level of

detail in the 2D parametric echosounder data so far, no clear remnants

of the Roman dike were identified. This is not so surprising in view of

the material that was used (stacked clay and peat blocks) which may

not easily have survivedmarine erosion. The tidal gully associatedwith

the Roman dike seems a more probable "target." It is not unlikely that

the latter can be linked to one of the buried paleochannels identified in

(or near) intertidal areaM (Fig. 8).

5.3 Peat/salt exploitation remnants

2D seismic data from the intertidal zoneswere oftenmarked by strong

reflectors in the nearshore part, roughly 1–2 m below the seafloor
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F IGURE 9 Seismic profiles and interpreted line-drawings from the intertidal zoneM showing interrupted peat layers (for location see Figure 4).
CPTs and corresponding cores shown in Figure 11 aremarked in blue. Depth inmeters TAW [Color figure can be viewed at wileyonlinelibrary.com]

(Fig. 9A). Their irregular form, marked by sudden interruptions and an

uneven topography, suggests an anthropogenic origin possibly related

to peat exploitation. The depth of the reflectors, between 0 and 1 m

TAW, correlates well with the surface peat layer observed nearby

behind the dunes (Pieters et al., 2013). The dense 2D seismic net-

work in intertidal zone M allowed us to map the distribution of these

interrupted shallow reflectors. The results correlate extremely well

with the results from EMI measurements obtained here during low

tide (Fig. 10). The distinct high conductivity zone (marked in white)

observed close to the dike perfectly “mirrors” the interrupted reflec-

tors (marked in orange). Since peat is known to exhibit a high conduc-

tivity (due to the high salt water content), this supported the interpre-

tation of peat excavation.

Peat excavation was further confirmed by the CPT logs and core

data from intertidal zone M (Fig. 11; for location see Figs. 4 and 10).

CPT 8/core 1 (Fig. 11, right) is located in the main high conductivity

zone. The high friction ratio (Rf) observed between −0.2 and 0.8 m

TAW indicates a thick peat layer which is confirmed by the core. The

top of the peat can be linked to a strong, shallow reflector on the seis-

mic data (marked in green on Fig. 9B). The latter correlates well with

the high conductivity zone on the EMI data (see Fig. 11). The peaty clay

layer at the bottom of the core could not be identified on the CPT log,
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F IGURE 10 Comparison between 2D marine seismic data and ter-
restrial electromagnetic induction (EMI) data obtained in intertidal
zoneM(for location seeFigure2) (backgroundprojectionGoogleEarth
map c©). EMI data after Delefortrie et al., 2014. Thin orange lines indi-
cate interruptions in the shallow seismic reflectors. The latter exactly
"mirror" the high conductivity area (in white) on the EMI plot. Thick
black lines mark the seismic profiles shown in Figure 10. Yellow dots
mark the CPT/cores shown in Figure 11 [Color figure can be viewed at
wileyonlinelibrary.com]

most likely a result of insufficient lithological difference with the over-

lying clay sequence.

CPT 8/core 4 (Fig. 11, left) is located slightly farther offshore, in a

zonemarked by alternating high and low conductivity (see Fig. 10). The

CPT log indicates a thick upper peat layer and a thin peat layer roughly

3mbelow; bothare confirmedby the core. Theupperpeat corresponds

well with the interrupted strong reflector on Figure 10 A indicating a

complex peat extraction zone. The thin, deeper peat layer can likely

be linked to the reflector at roughly −2.5 m TAW. Analysis of the full

seismic signal near core 4 indicated a large negative reflection for the

upper peat layer (Fig. 12). The negative peak for the bottom peat layer

was less distinct, possibly due to a decrease in density difference with

the surrounding deposits. Remarkably, also the thin peat intercalation

just beneath the upper peat layer showed up on the reflection series.

The sand and clay sequence observed in the core is barely detected on

theCPT log, likely due to insufficient lithological differences. A number

of irregular reflectors are observed on the seismic data (Fig. 9A) that

could be related to these sand and clay deposits, but a clear identifica-

tion is hindered by the seafloormultiple.

Not all the CPT logs and related cores display good agreement. This

could be due to several reasons, such as (1) the very high lateral and

vertical variability of the sediments, where even <1 m between core

and CPT location may give different results, (2) erroneous depths due

to the compaction of peat in the core, or (3) the presence of very thin

peat layers (<10 cm) which may not show up clearly in the CPT log.

In general, the CPT logs and cores show less presence of peat farther

offshore. This could be due to paleochannels that have largely eroded

the peat.

F IGURE 11 Two CPT logs and their corresponding shallow hand cores obtained in the nearshore part of intertidal zone M (for location see
Figures 4 and 10). Peat layers in the cores correspondwell with theCPT logs (high friction ratio Rf). Themarked increase in cone resistance (qc) and
sleeve friction (fs) in the lower part of the CPT logs indicates hard sandy deposits, possibly Pleistocene sand. Depth in meters below seafloor (bsf)
(black) andmeters TAW (blue) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 12 Seismic trace near CPT8/core 4 (see Figure 11). Red
arrowsmark negative peaks in the reflection series. The large negative
peak roughly 1 m below the seafloor corresponds with the top of the
thick upper peat layer. The two smaller negative peaks below are likely
linked to thin peat layers [Color figure can be viewed at wileyonlineli-
brary.com]

5.4 3D Seismic Data

Notwithstanding the high density of 2D seismic data in intertidal

zone M, it was still very difficult to get a coherent image of the peat

exploitation. This only became possible when 3D data were obtained

with the multitransducer parametric echosounder. In order to allow

optimal visualization, the uniform lattice was visualized in 3D with

a volume renderer using an opacity and color map transfer function.

Clipping planes were applied to visualize buried sections and time

slices below the sediment floor. The results are striking. For the first

time, a detailed image was obtained of the different peat and/or salt

excavation features (Fig. 13). This was a direct result of the extremely

small grid cell size (25 × 25 × 1 cm) of the 3D data volume which

allowed to observe even the smallest details.

No exposed featureswere observed on the seafloor in the recorded

areas, both on the seismic and multibeam data. The high complexity of

the subseabed morphology was already visible when seismic sections

of neighboring transducers within the array were compared. Horizon-

tal depth slices across the volume of 3D area A revealed numerous

artificial subsurface features (Fig. 13). Dimensions of the subsurface

features varied between 1 m and up to 50 m length. The peat layer

distribution was recognizable by a distinct amplitude level of the

acoustical signals.

On the depth slices in Figure 13, we can clearly observe an appear-

ing and disappearing pattern including peat strips, rectangular and cir-

cular pits, long (often diagonal) trenches, and small parallel ridges. Fine

meandering features are likely due to small tidal gullies.Most of the cir-

cular features (with diameter ranging between 5 and 15 m) can likely

be linked to controlled explosions of WW1 and WW2 ordnance. The

observed features agree extremely well with old photographs taken

before construction of the groins (Fig. 13, right). Unfortunately, exact

georeferencing of the photographs remains difficult due to spectro-

scopic distortion anda lackof identificationpoints.No clear indications

were foundofwoodenpoles lining the excavation pits.Most likely their

thickness (<10 cm) is beyond the resolution of the 3D data.

Figure14showsahorizontal depth slice through the smaller volume

of 3D area B located slightly farther offshore. Though the resolution is

noticeably less than in area A (due to larger gaps in the line spacing,

see Fig. 4), there seem to be no peat excavation features present here.

Instead amarked paleochannel is observedwhich cuts sharply through

a thinpeat layer. The feature agreeswellwith theEMIdata inFigure10.

6 CONCLUSIONS

The study area at Ostend-Raversijde is marked by a high level of het-

erogeneity and lateral variability in the shallow subsurface, typical of

high-energy tidal flat areas. Very high resolution 2D subbottom data,

obtained with a parametric echosounder, have allowedmapping of the

complexpatternof buriedpaleogullies, not only in the subtidal areabut

also in the extremely shallow intertidal zone. Due to the local presence

of gas in the sediments and relative wide profile spacing (50–100 m in

the subtidal area), and the often unpredictable course of the channels,

it was not always possible to exactly follow and map all the channels.

Still the high level of detail in the 2D seismic data led to a few impor-

tant new discoveries. For the first time geophysical proof is presented

for the drowned medieval peninsula of Testerep and the Yde gully that

bordered the fishing village ofWalraversijde.

In the intertidal area the chaotic patternof interrupted shallowseis-

mic reflectors suggested human interference related to peat digging.

This was confirmed by EMI measurements and additional CPTs and

shallow cores obtained on the intertidal beach at low tide. Peat lay-

ers barely 10 cm thick could still be recognized on the seismic data

(as negative peaks in the reflection series). Notwithstanding the high

resolution of the parametric echosounder profiles, the 2D data did not

permit us to fully map the complex excavation pattern. This was only

possible through 3D investigations using a novelmultitransducer para-

metric echosounder and applying a line spacing of 1 m. This finally

allowed us to image the peat exploitation pattern in the highest detail

(e.g., rectangular and circular pits, long trenches, small parallel ridges).

The observed features agree completelywith old aerial photographs of

outcropping peat on the beach.

The presented research at Ostend-Raversijde is unique in more

than one way. First, it is one of the first studies carried out in an

intertidal area integratingmarine and terrestrial geophysical datawith

geotechnical data. This was possible due to the high tidal variations

that allowed us to obtain marine data very close to shore and land

data relatively far offshore on the beach. The results also show that

parametric echosounder data are a highly effective tool to map buried
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F IGURE 13 Horizontal depth slices (∼30 cm interval) through 3D area A (for location see Figures 4 and 10). On the right, old photographs from
excavated peat exposed on the beach (before the construction of groins) that show a striking resemblance to the features observed on the depth
slices (Photos E. Cools) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Horizontal depth slice through 3D area B (for location
see Figures 4 and 10). The curved feature can be linked to a paleochan-
nel cutting through the peat layer [Color figure can be viewed at wiley-
onlinelibrary.com]

peat layers and submerged landscapes in high detail, even in extremely

shallow water. Secondly, this is the first study to present ultra-high

resolution 3D seismic images of buried archaeological features with

unprecedented detail (sub-meter level). With this, the novel multi-

transducer parametric echosounder system sets a new standard for

shallow water research and opens important perspectives for geoar-

chaeological studies in nearshore areas.

Thus far, no indications have been found of the actual drowned

medieval settlement or the Roman dike. This may be (partly) due to

insufficient lateral resolution of the 2D data. New investigations with

the multitransducer parametric echosounder are planned at Raver-

sijde in the near future that will hopefully allow us to identify buried

house remnants and/or former coastal defense structures.
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Texte surligné 
That doc does not mention a Roman dike, but explains salt production by means of peat burning.




