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A B S T R A C T   

Delos Island, located in the Aegean region, became a major religious, cultural, and commercial hub during the 
Hellenistic period (323-30 BCE). From the 3rd century onwards, the island underwent significant growth, driven 
by the efforts of the independent city of Delos. This growth further intensified when Rome designated Delos as a 
free port and transferred its control to Athens in 167 BCE. The island’s prosperity led to its maritime infra-
structure, particularly the Main Harbour, playing a crucial role in trade. The current coastal landscape, however, 
bears little resemblance to the Hellenistic one. An interdisciplinary (archaeology, geomorphology, geophysics, 
sedimentology, micropalaeontology, and oceanography) study was conducted from 2007 to 2017 to propose a 
new reconstruction of the Hellenistic harbour. The study showed that the bay of the Main Harbour extended less 
to the north than indicated in previous studies, and that the landscape evolved considerably during Antiquity. 
The absence of evidence for quays suggests that access was limited to flat-bottomed boats, raising questions 
about the anchorage possibilities for larger boats.   

1. Introduction 

Located at the heart of the ancient Aegean world, Delos Island is one 
of the most renowned archaeological sites from Antiquity. Designated in 
1990 as a UNESCO World Heritage Site, the city was a major hub for 
commerce in the Aegean region, connecting the Eastern and Western 
Mediterranean (Bruneau et al., 1996; Zarmakoupi, 2015). It saw an 
economic boom from the 3rd century onwards under the initiative of the 
independent city of Delos (Chankowski 2019). Its prosperity peaked 
after its declaration as a free port by the Roman authorities in 167 BCE 
(Hasenohr, 2012). The trading port gradually lost its importance during 
the 1st century BCE, but the town continued to exist until the 6th century 
CE. 

The maritime infrastructure, particularly the Main Harbour (often 

defined as the Sacred Harbour) located in the northwestern part of the 
island (Fig. 1), played an important role in trade. Hence, reconstructing 
its landscape is crucial for furthering historical and archaeological 
knowledge. However, the current landscape bears little resemblance to 
the Hellenistic one, as a large volume (around 60,000 m3 according to 
Mourtzas, 2012) of debris from archaeological excavations was dumped 
back into the Main Harbour bay in the late 19th and early 20th cen-
turies. Therefore, previous reconstructions of the harbour’s landscape 
during the second Athenian domination (167-69 BCE), such as those 
presented by Duchêne et al. (2001), were based on conflicting publica-
tions from the early 20th century. For example, according to Pâris 
(1916), the Grand Port was made up of basins shaped by plunging quays, 
whereas according to Ardaillon (1896), it consisted of a beach on which 
boats were pulled, bordered by a street. The first restitution is based on 
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data from Cayeux (1907, 1911, 1914) which indicate that the sea level 
has remained stable since the Hellenistic period. The second is consistent 
with Négris (1903) who asserted that the sea level had risen by 3 
m–3.50 m since ancient times in Delos. As several studies over the last 30 

years (e.g., Desruelles et al., 2009) support this theory, the reconstruc-
tion proposed by Ardaillon (1896) seemed more coherent, raising 
questions about the functioning of the harbour, such as accessibility for 
deep-draught boats. 

Fig. 1. Geology of Delos and Rhenia. 1: spot height (in m); 2: elevation contour (5 m); 3: ephemeral flow; 4: leucocratic gneiss; 5: biotite gneiss; 6: dykes and sills of 
fine-grained granite; 7: hornblende monzogranite; 8: biotite and hornblende monzogranite; 9: pyroxene monzogranite or granodiorite; 10: migmatitic gneiss; 11: 
marble; 12: fault or hidden fault; 13: “poros” (calcarenites); 14: necropolis; 15: antique city; 16: “Réservoir de l’Inopos”. Map based on Desruelles (2004), Desruelles 
et al. (2007), and Jolivet et al. (2021). 
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In line with geoarchaeological studies based on geoscientific tools 
that have helped answer key archaeological questions on ancient 
habours (Marriner and Morhange, 2006; Marriner et al., 2005, 2010, 
2017; Pourkerman et al., 2020), an interdisciplinary study was con-
ducted from 2007 to 2017 to provide new paleoenvironmental data and, 
finally, to settle the debate on contradictory paleogeographic re-
constructions, including issues related to the port’s accessibility for 
deep-draught boats. This study combined cartographic archives; 
geomorphological, micropalaeontological, and sedimentological ana-
lyses; geophysical and submarine surveys. 

2. Geomorphological and archaeological settings 

2.1. Geomorphology 

The island of Delos is primarily composed of Miocene granite 
(Fig. 1), which is part of the Mykonos-Delos-Rhenia metamorphic core 
complex located in the centre of the Aegean back-arc extensional basin. 
This area is located to the north of the subduction of the African plate 
under the Eurasian plate (Jolivet et al., 2021). The back-arc extension 
was active from the Late Oligocene to the Late Miocene (Rabillard et al., 
2018), and the Cycladic plateau has likely behaved as a rigid block with 
no significant deformation since the Late Miocene, as indicated by the 
lack of major earthquakes (Tirel et al., 2004). 

According to Desruelles et al. (2009), the mean sea level in 
Mykonos-Delos-Rhenia was approximately 2.50 (±0.50) meters below 
the present sea level (b.s.l.) around 400 BCE. This evolution over time is 
due to eustatism and glacio-hydro-isostasy, whose effects are enhanced 
by the subsidence trend (Lambeck and Purcell, 2005; Pavlopoulos, 2010; 
Pavlopoulos et al., 2011; Sakellariou and Galanidou, 2016; Benjamin 
et al., 2017; Roy and Peltier, 2018). 

The Main Harbour is located in a shallow bay surrounded by rocky 
bluffs to the north and south. The bay borders a flat low-lying area called 
the “Main Plain” (“Plaine Principale”; Fig. 1) where the Apollo Sanctu-
ary was located. The current shape of the bay is a result of the accu-
mulation of debris from excavation sites, leading to the construction of a 
jetty at the beginning of the 20th century. This jetty retains the sedi-
ments brought in by the longshore drift, resulting in silting over much of 
the bay. To the west is the Strait of Delos (Fig. 1), which separates Delos 
from Rhenia. Despite a low tidal range (up to 0.30 m), access to the 
harbour by boat can be difficult due to the shallowness of the strait and 
the presence of two islets (known as “mikros” and “megalos” Rematiaris; 
Fig. 1), as well as the influence of the north swell, which can be strong in 
summer because of the wind. 

2.2. Archaeology 

The earliest identified harbour constructions date from 314 BCE to 

Fig. 2. Archaeological remains (constructions, rip-rap …) drawn from the plans published by Ardaillon (1896) and Holleaux (1909). 1: elements on the plan 
published by Ardaillon; 2: elements on the plan published by Holleaux; 3: elements on the plans published by Ardaillon and Holleaux. Basemap: https://sig-delos. 
efa.gr. 
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167 BCE, when trade began to prosper. The harbour was later expanded 
when the city became a free port in 167 BCE. An extensive backfill of the 
harbour area was funded by the city of Delos during at least the period 
between 217 and 180 BCE and before 125 BCE by the Athenian epi-
meletes Theophrastos (Duchêne and Fraisse, 2001; Karvonis, 2008; 
Zarmakoupi, 2015; Malmary and Karvonis, 2016; Chankowski, 2019). 
Many commercial buildings were then built south of the harbour 
(Hasenohr, 2002; 2012). Previous reconstructions of the harbour’s 
landscape during the second Athenian domination (167-69 BCE), such 
as those presented by Duchêne et al. (2001), were based on conflicting 
publications from the early 20th century.  

• According to Ardaillon (1896), the harbour was located in a shallow 
bay bordered by a wetland and protected by a natural barrier that 
had been artificially reinforced (Fig. 2). This barrier, referred to as a 
“jetty” (“jetée”; Supplementary material 1), would have shielded the 
harbour basin from swell, and its sandy beach was used to pull the 
boats ashore. Ardaillon estimated that the basin was originally be-
tween 1 m- and 3 m-deep, allowing ships to anchor there. He re-
constructs an 8 m-wide paved street along the Apollo Sanctuary and 
a beach of the same width. He also located two 13.50 m-by-8.50 m 
rectangular structures, referred as “X1” and “X2” on Fig. 2 in the 
vicinity of the West Portico and to the south of the “jetty”. He 
believed these to be monumental bases marking the entrance to the 
Main Harbour. No remains of quays were identified during his 
excavations.  

• In 1916, Pâris published an alternative reconstruction of the Main 
Harbour, based on the surveys directed and published by Holleaux 
(1909). According to Pâris, the harbour consisted of quays, rip-raps, 
and moles (Fig. 2). The jetty mentioned by Ardaillon (1896) is 
referred to the “Great Mole” (“Grand Môle”; Supplementary material 
2), which would have been an artificial structure, at least in part, and 
probably covered by a quay. To the northwest of the Main Harbour’s 
basin, Pâris suggests the existence of a small secondary basin. The 
main basin would have been bordered by rip-raps on the southern 
edge of the Agora of Theophrastos. He also posits that quays would 
have bordered the Apollo Sanctuary and the West Portico (Fig. 2). 
Finally, the southern part of the basin would have been delimited by 
a quay on the edge of the Agora of the Competaliasts, extended by a 
supposed “Small Mole” (“Petit môle”). This quay and the eastern wall 
of the “Small Mole” match the southern and eastern sides of building 
“X1”, as identified by Ardaillon (1896). However, no accurate re-
cords support the Pâris (1916) reconstruction. 

These two contrasting reconstructions of the ancient harbour land-
scape were each influenced by two conflicting theories about sea level 
variations. The first was influenced by Négris (1903), who asserted that 
the sea level had risen by 3–3.50 m since ancient times, based on the 
observation of submerged Hellenistic remains. In contrast, Cayeux 
(1907, 1911, 1914), who has influenced Pâris (1916), argued that sub-
mersion does not necessarily indicate a rise in sea level, as the structures 
could have very well been built in the water from the start. According to 
him, because of their composition (including many intact mollusc 
shells), these backfills would have been deposited underwater to extend 
the port into the sea (Cayeux, 1907). However, the fossil marine or-
ganisms that Cayeux claimed to have found to support his reconstruction 
have not been recovered (Duchêne and Fraisse, 2001). 

Archaeological excavations conducted in the Agora of the Com-
petaliasts have revealed that the paved esplanade was constructed on a 
backfill deposited in the 2nd century BCE to cover a coastal marsh that 
had formed at the mouth of the Inopos river (Hasenohr, 1996; Des-
ruelles, 2004), prior to the construction of a dam upstream (“le Réservoir 
de l’Inopos”; Fincker and Moretti, 2007). The western edge of this 
esplanade probably marked the boundary between the marsh and a 
sandbar. The Inopos is the sole watercourse on Delos (Desruelles, 2004). 
While its flow is intermittent, it surely has played a significant role in the 

infilling of the bay as well as in the shaping of the coastline. Like many 
watercourses in the Cyclades, its valley was more extensive during the 
Last Glacial Period. Studies relying solely on bathymetric surveys from 
the early 20th century suggest that prior to being submerged during the 
Holocene due to Post-Glacial Sea-Level Rise, the palaeo-valley of Inopos 
flowed westward towards the island of Rhenia, passing between the is-
lets of Mikro and Megalo Rhematiaris (Nakas, 2022). 

Considering the uncertainties present in the early 20th century re-
constructions and the recent findings regarding the relative sea level 
changes since the Antiquity, a new study leveraging updated materials 
and methods was initiated. 

3. Material and methods 

3.1. Analysis of historical maps 

In order to understand the topography and underwater landscape of 
the Main Harbour bay before its disruption because of archaeological 
debris, maps from the late 19th and early 20th centuries were gathered, 
georeferenced, and integrated into a Geographic Information System 
using the Greek HGRS87 (Hellenic Geodetic Reference System) or EGSA 
(“ЕΓΣА’87” in modern Greek) system (Delikaraoglou, 2008). The map 
drawn by Ardaillon in 1896 (Supplementary material 1) proved to be 
particularly useful in this effort. 

3.2. Geophysical surveys 

Two types of geophysical surveys were conducted in order to assess 
the geometry and thickness of surface deposits and determine the depth 
of the bedrock, as well as identify buried archaeological structures.  

• Six terrestrial and two marine electrical resistivity tomography 
(ERT) campaigns were carried out in September 2007 (Fig. 3). The 
2D subsurface profiles were created using the ABEM Lund Imaging 
System (Terrameter LS/4 channel) with a 64-electrode array and a 
Schlumberger-Wenner reciprocal layout protocol. A computer 
inversion program (Res2Dinv; Loke, 2003) generated images of the 
resistivity distribution on a cross-section beneath the survey line.  

• An electromagnetic survey was conducted in August 2008 in the 
Apollo Sanctuary (Fig. 3) using EM31 and EM38 conductivity meters 
(Geonics Ltd). These instruments consist in two coils spaced 3.66 m 
(EM31) and 1 m (EM38) apart and operated at a frequency of 9.8 kHz 
(EM31) and 14.6 kHz (EM38), respectively. The measurements were 
taken along profiles spaced 5–10 m (EM31) and 1–2 m (EM38) apart. 

3.3. Submarine survey 

Bathymetry and seafloor imagery between Delos and Rhenia were 
acquired by sonar systems in November 2016 (Fig. 6). The shallow- 
water bathymetry was obtained using a single-beam echo sounder 
(Humminbird 998c SI Combo GPS Chartplotter), while the deep-water 
bathymetry was measured using a multi-beam echo sounder (Reson 
SeaBat 7125). Additionally, 10 km of high-resolution seismic profiles 
were acquired from the Strait of Delos using a Chirp Profiler from 
GeoAcoustics. However, seismic profiling was not possible in the 
shallow depths between Delos and the “megalos” and “mikros” Rema-
tiaris islets, which means that the thickness of the alluvial and anthro-
pogenic sediments in front of the modern harbour could not be 
determined through this method. The data was processed using the SB- 
Interpreter (Triton Imaging Inc) and SonarWiz (ChesaPeake Technol-
ogy) softwares and subsequently integrated into a Geographic Infor-
mation System. 

3.4. Sediment core sampling and analysis 

Eleven cores (C1 to C11) were drilled with a Cobra TT vibrocorer in 
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October 2007 (Fig. 3), with a diameter of 50 mm and to a maximum 
depth of 5.20 m below ground surface. They were positioned according 
to the results of the geophysical survey. They were precisely levelled in 
the HGRS87/EGSA system (whose altitudes are 0.86 m higher than the 
Dellinger system used by the archaeologists of the French School at 
Athens; Moretti et al., 2015). In 2016, an additional vibrocore (Theo1) 
was extracted from the Agora of Theophrastos as a control sample for 
this study (Fig. 3). 

3.5. Micropalaeontological analyses 

A stratigraphical description of the sediment’s texture and colour 
was conducted in the field. Micropalaeontological analyses (benthic 
foraminiferal assemblages) were performed on 41 samples collected 
from cores C3, C6, C7, and C11 (Supplementary material 4). Each 
sample (dry weight: 10 g) was treated with H2O2 to remove the organic 
matter, wet-sieved through a 63 μm mesh, and dried at 60 ◦C. Whenever 
possible, a total of 200–300 foraminiferal specimens were manually 
selected from each sample for analysis. The microfauna has been iden-
tified using a Leica S6E stereomicroscope and the applied taxonomy on 

Fig. 3. ERT profiles, electromagnetic survey, and drill core locations. Coordinate system: WGS 1984 UTM Zone 35 N. Basemap: https://sig-delos.efa.gr.  
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benthic foraminifera assemblages is based on Loeblich and Tappan 
(1987), Cimerman and Langer (1991), Hottinger et al. (1993), and 
Dimiza et al. (2016). The benthic foraminiferal relative abundances and 
density (Number of foraminifera specimens/g) were estimated, and the 
BR-ratio has been calculated. 

3.6. Radiocarbon dating 

Twenty-four marine shells (based on the results from the analyses 
mentioned in §3.6 above), pieces of charcoal, bones, plant remains, and 
wood samples were dated using AMS at the “Centre de datation par le 
Radiocarbone” in Lyon, France (Fig. 4). The 14C dates were calibrated 
using the IntCal20 and IntCalMarine20 calibration curves as well as the 
CALIB 8.2 program (Reimer et al., 2020; Stuiver et al., 2022). Marine 
calibration was applied based on δ13C values and the marine reservoir 
effects were considered based on Reimer and McCormac (2002) and 
Heaton et al. (2020). 

4. Results 

4.1. Borehole chronostratigraphy 

The lowermost substratum is found to be weathered for every core, 
with a surface that varies between ~4.80 m below the mean sea level (b. 
s.l.; core C7) and ~0.20 m above the mean sea level (a.s.l.; core C9). Six 
main morphosedimentary units overlie the bedrock (Fig. 5).  

• Unit A covers the bedrock in cores C3 and C11, between 2.35 m b.s.l. 
and 1.85 m b.s.l. It primarily consists of silty coarse sand with an 
abundance of clay but no shells or pottery remains. The microfauna 
is dominated by marine species (Fig. 6): small rotaliids (mainly 
Rosalina bradyi, Discorbis williamsoni, Cibicides refulgens, Lobatula 
lobatula and Conorbella imperatoria; 9 % in core C3, 33 % in C11), 

Elphidium crispum and Elphidium complanatum (20 % in core C3, 33 % 
in C11), Ammonia beccarii (17 % in core C11), and miliolids (mainly 
Quinqueloculina seminula; 18 % in core C3). However, this unit also 
includes species adapted to low-salinity environments: Ammonia 
tepida (associated with rare Aubignyna perlucida and Haynesina ger-
manica) particularly in core C3 (52 %). According to the dating for 
core C3 (565-402 BCE), these sediments were deposited before the 
Hellenistic period (323-30 BCE).  

• Unit B overlies the bedrock in core C7, between 4.65 m b.s.l. and 
3.55 m b.s.l. It primarily consists of coarse sand including shell 
debris, as well as pebbles, cobbles, and a few fragments of pottery. Its 
top layer is composed of sand, pebbles, and charcoal. The microfauna 
is dominated by marine species such as Peneroplis pertusus (~25 %), 
miliolids (22–38 %), and small rotaliids (~15 %), but also includes a 
high concentration of A. tepida (15 % at 4.325 m and 35 % at 4.625 
m). This layer is dated as ranging from 212 to 92 cal. BCE (core C7).  

• Unit C covers the bedrock in cores C1, C4, C5, and Theo 1. It overlies 
Unit A in cores C3 and C11. Its top elevation ranges from ~1.35 m b. 
s.l. (C4) To ~0.35 m b.s.l. (C3). It primarily consists of coarse sand, 
including pebbles, and sometimes debris of shells. It is characterised 
by its abundance of cobbles and pottery fragments. The microfauna is 
dominated by marine species such as small rotaliids (15–50 %), 
miliolids (~20 %), and Elphidium spp. (15–30 %). This unit has been 
dated as ranging from 571 to 404 BCE (core C5) to 371-175 BCE 
(core C3).  

• Unit D1 covers Unit C in cores C1, C2, C3, C4, C5, C11, and Theo 1. 
Its thickness varies greatly, ranging from 0.12 m (core C3) to 1.20 m 
(core C1). It is mainly composed of sand of different textures (silty to 
coarse) and pebbles. It is characterised by its abundance of shell 
fragments and the scarcity of pottery fragments. The microfauna of 
core C11 consists mainly of typical infralittoral marine species, such 
as small rotaliids (R. bradyi, D. williamsoni, C. refulgens, and C. 
imperatoria; 30–50 %) and miliolids (Q. seminula, Q. irregularis, Q. 

Fig. 4. Radiocarbon dating results. The 14C dates were calibrated using the IntCal20 and IntCalMarine20 calibration curves, as well as the CALIB 8.2 program 
(Reimer et al., 2020; Stuiver et al., 2022). 
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Fig. 5. Chronostratigraphic cross-section based on drilled cores. 1: cobbles; 2: pebbles; 3: coarse to very coarse sand; 4: “medium” sand; 5: fine or silty sand; 6: clay; 
7: weathered substratum; 8: charcoal; 9: roots; 10: shells; 11: pottery remains; 12: AMS radiocarbon dating. 
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bicarinata; e.g., Sgarrella and Moncharmont Zei, 1993; 10–20 %), 
associated with planktonic foraminifera (up to 30 %). This assem-
blage suggests relatively shallow palaeoenvironmental conditions 
with a direct connection to the open sea (e.g., Triantaphyllou et al., 
2021). In addition, the presence of P. planatus (8 %) at the bottom of 
the unit implies the presence of rich algal vegetation in the palae-
oenvironment (e.g., Faber and Lee, 1991). According to the dating 
for core C4 (602–659 CE and 417–725 CE), these sediments depos-
ited during the medieval period.  

• Unit D2 overlies either the bedrock (core C6) or Unit B (cores C7 and 
C8). Its thickness varies between 2.20 m (core C8) and 3.35 m (core 
C7). It is mainly composed of sand or coarse sand, including pebbles, 
cobbles, and shell debris. Unlike Unit D1, it contains many fragments 
of pottery. The microfauna consists mainly of marine species such as 
small rotaliids (10–30 %), Elphidium spp. (5–15 %), A. beccarii (<18 
%), miliolids (20–50 %), P. planatus (5 %), P. pertusus (10–50 %), and 
A. tepida (up to 20 % in core C7 but negligible in core C6). These 
deposits (ranging from 120 to 245 CE to 1046–1346 CE in core C6) 

Fig. 6. Benthic foraminiferal relative abundance in cores C3, C6, C7, and C11.1: brackish water species; 2: rich algal vegetation species; 3: marine, infralittoral 
species; 4: cobbles; 5: pebbles; 6: coarse to very coarse sand; 7: “medium” sand; 8: fine or silty sand; 9: clay; 10: weathered substratum; 11: charcoal; 12: roots; 13: 
shells; 14: pottery remains; 15: AMS radiocarbon dating. 
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are posterior to the Hellenistic period (323-30 BCE), but also include 
an earlier piece of charcoal (212-92 BCE) in core C6. 

• Unit E, found in all cores, is comprised of sand, pebbles, pottery re-
mains, and, at times, marine shell fragments. It is posterior to 1518 
CE. 

4.2. Submarine survey 

4.2.1. Bathymetry and seafloor imagery 
The underwater terrain in the vicinity of the current port as well as 

the “mikros” and “megalos” Rematiaris islets is quite uniform, with 
depths ranging from 3 to 4 m. The depth increases between the two is-
lets, reaching almost 25 m to the west of the strait. Sonar data reveals a 
succession of fine-grained sediments, ripple-marked sands, rocks, and 
patches of seagrass in front of the current harbour (Fig. 7b). The strong 
hydrodynamics (longshore drift along the North/South axis) make it 
challenging to differentiate the sediments deposited by the Inopos river 
from those reworked by currents and waves from the archaeological 
excavations. 

4.2.2. High-resolution seismic profiles 
Seismic profiling was not possible in the shallow depths between 

Delos and the Rematiaris islets, which means that the thickness of the 
alluvial and anthropogenic sediments right in front of the modern 
harbour cannot be determined through this method. However, the sur-
vey revealed a submerged palaeo-valley to the southwest of Delos 

(Fig. 7c), with a depth of 25 m and a width of 100 m approximately. This 
valley is filled with late-Quaternary/early-Holocene alluvial sediments 
with an apparent thickness of up to 10 m at the bottom. This palaeo- 
valley could match the prehistoric course of the Inopos river and pro-
vide valuable insight into the prehistoric palaeogeography of the island 
(Kapsimalis et al., 2009; Sakellariou and Galanidou, 2016). The upper 
sedimentary unit is believed to consist of Holocene, fine-grained mate-
rial such as sand and mud. These results demonstrate that the 
palaeo-valley of Inopos did not extend between the Rematiaris islets 
(Fig. 7a). 

4.3. Geophysical survey 

No evidence of the rip-rap and quays mentioned by Pâris (1916) was 
found at the western boundary of the Apollo Sanctuary based on the 
results of the ERT and electromagnetic surveys. Nonetheless, three ERT 
profiles (Fig. 8) detected resistive anomalies.  

• To the south of the Agora of Theophrastos, the high resistivity values 
in the middle of P8 are likely due to recent underground pipework.  

• In the centre of the Main Harbour bay (P5 and P6), the resistivity 
values at depths of 2–4 m are higher compared to those at 4–6 m, 
indicating the presence of submerged constructions from an un-
known period. 

Fig. 7. Oceanographic survey results. A: Bathymetric contours in front of the Main Harbour (contour lines: 1 m); B: Submarine sonar morphological features; C: 
Seismic line and stratigraphic interpretation of the submerged Inopos palaeo-valley. 
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• In the southern part of the bay, the higher resistivity values in the 
eastern part of P4 above a depth of 2 m are likely caused by the 
ancient structure referred by Ardaillon (1896) as “X1” (Fig. 2). 

Overall, the resistivity values indicate that the bedrock slopes to-
wards the west and south. The correlation of the ERT profiles and the 
stratigraphy found in boreholes (e.g., P3 and P7 with core C8), allowed 
us to identify three geophysical units (Fig. 8).  

• Unit Ge1 is characterised by highly-variable resistivity values. The 
resistivity values of the weathered substratum are found to be be-
tween 2 and 30 Ωm, while those for the unaltered bedrock are higher 
than 30 Ωm.  

• Unit Ge2, with low resistivity readings (<2 Ωm), corresponds to 
primarily sandy layers filled with salt water (Units B, C, D1, and D2 
identified in the boreholes).  

• Unit Ge3, with resistivity values lower than 10 Ωm, corresponds to 
coarse material (Unit E). 

The electromagnetic survey shows a weighted average of conduc-
tivity values up to 3–6 m (EM31) and up to 1–2 m (EM38) in depth. This 
reveals two distinct areas (A and B) in terms of conductivity values 
(Fig. 9). Area A, with conductivity values higher than 100 mS/m, is 
characterised by an abundance of salt sediment fillings, which enhance 
the transmission of the magnetic field. This interpretation is supported 
by most of the cores and ERT profiles. By contrast, the low conductivity 

values (<30 mS/m) in area B can be attributed to the presence of 
crystalline outcrops and a very thin sedimentary cover, as demonstrated 
by cores C9 and C10, which reveal that the bedrock surface is only 
0.60–0.80 m deep. The boundary between these two areas is a line 
pointing North located at the western limit of the Apollo Sanctuary. 

5. Interpretation and discussion 

5.1. Palaeogeographic evolution of the Main Harbour bay since the 3rd 
century BCE 

The reconstruction of the palaeogeographic evolution of the Main 
Harbour bay since the Hellenistic period is challenging due to post- 
Antique sedimentation and the absence of archaeological reports de-
tailing the excavations carried out in the area during the late 19th and 
early 20th centuries. Some of the boreholes may have crossed backfills 
from these excavations. 

The analysis of the sediment’s characteristics and chronology, as 
revealed in the cores, led to the following interpretation of the strati-
graphic units (Fig. 5).  

• The lack of shell and pottery remains combined with the abundance 
of foraminiferal species (significant quantities of A. tepida associated 
with a scarcity of A. perlucida and H. germanica; Fig. 6) in Unit A 
suggests freshwater inputs into the palaeoenvironment. A. tepida is 
associated with a wide range of salinity in near-shore environments 

Fig. 8. ERT profiles, identified geoelectric units (Ge), and comparison with drilled cores.  
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(e.g., Frontalini et al., 2009), while H. germanica and A. perlucida are 
typical species of estuarine and shallow marine environments (e.g., 
Carboni et al., 2010; Koukousioura et al., 2012), featuring mesoha-
line to oligohaline biofacies in modern closed lagoons of the Aegean 
area (e.g., Koukousioura et al., 2012; Dimiza et al., 2016) and 
meso-oligohaline conditions in several Aegean coastal plains (e.g. 

Triantaphyllou et al., 2003; 2010; Evelpidou et al., 2010; Goiran 
et al., 2011). Based on these results, Unit A can be interpreted as 
pre-harbour deposits (according to the Ancient Harbour Para-
sequence (AHP) model defined by Marriner and Morhange, 2006) in 
a very quiet environment. We reconstruct a lagoon, shaped in an 
alveolus (resulting from the bedrock weathering). 

Fig. 9. Electromagnetic survey results (EM31) and identified units.  
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• Unit B, rich in shell debris and relatively poor in pottery remains, can 
be interpreted as the sedimentary floor of the Main Harbour bay 
during Antiquity. Its foraminiferal assemblage, dominated by 
P. pertusus, miliolids, small rotaliids, and a relatively high content of 
A. tepida (Fig. 6), indicates shallow marine sediments with fresh-
water input (probably linked to the underflow of the Inopos river. 
The top of this unit, rich in charcoal probably of human origin, can be 
considered as the foundation surface of the harbour according to the 
AHP model (Marriner and Morhange, 2006). 

• Unit C, characterised by its richness in cobbles and pottery frag-
ments, can be interpreted as the backfill installed by the city of Delos 
or Athens from the end of the 3rd to the end of the 2nd century BCE, 
as per epigraphic sources (Hasenohr, 2002). Its absence from core C2 
is probably due to post-Antique marine erosion. At the end of the 
19th century, the area where core C1 was drilled was covered by the 
beach, and the shoreline was at the location of core C2 (Ardaillon, 
1896, Fig. 10c).  

• Due to its chronology, sedimentary characteristics (sand rich in shell 
fragments and relatively poor in pottery remains), and foraminifera 
composition (typical infralittoral marine species), Unit D1 is inter-
preted as post-Hellenistic marine deposits corresponding to harbour 
abandonment facies, according to the AHP model (Marriner and 
Morhange, 2006), in a relatively shallow palaeoenvironmental con-
ditions with a direct connection to the open sea.  

• The chronology and sedimentary characteristics of Unit D2, which 
differs from D1 by its abundance of pottery debris, lead to its being 
interpreted as the natural or anthropogenic deposition of sediments 
in the Main Harbour bay after the Hellenistic period. The early dating 
(212-92 BCE) of the sample “Lyon-7093” collected 190 cm depth 
from C6 (Figs. 4 and 5) may be due to dredging to maintain sufficient 
draught (see 5.2). However, its stratigraphic position above the 
others (Fig. 5) does not exclude the possibility of reworked 
sediments. 

The foraminifera identified in this unit suggest shallow palae-
oenvironmental conditions with a direct connection to the open sea. A 
relatively higher rate of A. tepida at a depth of ~2.80 m and 3.50 m 
(Fig. 6) indicates past freshwater influence. However, given the very 
likely human influence on these deposits, palaeoenvironmental inter-
pretation is uncertain.  

• Unit E corresponds to recent soils and fills. 

The cores did not cross fine-grained harbour silts and clays, as usu-
ally found in the stratigraphy of abandoned ancient harbours (Marriner 
and Morhange, 2006; Marriner et al., 2005, 2010, 2017; Pourkerman 
et al., 2020), This sedimentation gap may be due to deposits from the 
major excavation of the late 19th/early 20th century or to dredging (see 
5.2). 

North of the Main Harbour bay, cores C1, C2, C3, C11, and Theo 1, as 
well as profiles P1 and P8, reveal that the Agora of Theophrastos was 
created by filling in a lagoon (Unit A) with a backfill (Unit C) dating from 
390 to 175 BCE (Figs. 5, 10a and 10b). The size and shape of this former 
wetland, located in an alveolus resulting from bedrock weathering, 
cannot be accurately determined. According to core C3, the bottom of 
this oligohaline environment was slightly above sea level around 400 
BCE (2.35 m below present sea level corresponding to 0.15 m a.s.l. 
around 400 BCE, according to Desruelles et al., 2009), which explains 
the mixture of fresh and salt water. Based on the current bathymetry, 
which is likely similar to that of the Hellenistic period (323-31 BCE) due 
to the absence of sediment covering the substrate in this area, the Hel-
lenistic shoreline corresponded to the “Great Mole” (Figs. 2 & 10b). The 
huge blocks that form it are believed to be remnants of a rip-rap built 
before the Hellenistic period (maybe during the Archaic period, 776-480 
BCE) according to Duchêne and Fraisse (2001). Around 400 BCE, this 
wall, located along the extension of the western limit of a submerged 
abrasion platform (west of the “House on the Hill”; Mourtzas, 2012), 
protected an emerged area filled with buildings from the north swell. 

The western buildings of the Apollo Sanctuary, located further south, 
are primarily built on a granitic platform, referred to as the “Terrasse du 
Temenos” by Cayeux (1907), which was identified through the elec-
tromagnetic survey (conductivity values < 30 mS/m; area B in Fig. 9). 
Results from cores C9 and C10 indicate that the bedrock surface was at 
~2.70 m a.s.l. around 400 BCE (i.e., currently 0.20 m a.s.l.). According 
to the plan published by Holleaux (1909; Supplementary material 3) and 
Maar (drawn from 1901 to 1910–1911; Etienne, 2018), a paved street 
with a width of 6–8 m ran alongside the sanctuary (Fig. 10b). Profile P7, 
as well as cores C4, C5, C6, C7, C8, and C9, suggest that the bedrock 
sloped towards the west and south, from a height of ~1.50 m a.s.l. 
around 400 BCE near core C5 to ~2.25 m b.s.l. in the vicinity of core C7. 
This paved street was built on top of a sedimentary layer, which was 
likely filled with a backfill (Unit C) to level the ground surface on the 

Fig. 10. Palaeogeographic reconstruction of the Main Harbour bay of Delos at the end of the 3rd century BCE prior to the backfill (A); in 100 BCE (B); and at the end 
of the 19th century (C; according to Ardaillon, 1896). 
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sloping bedrock. It borders a beach whose bottom was ~0.60 m b.s.l. 
around 400 BCE (currently 3.10 m b.s.l.) at the location of core C8. 
Considering a 1 m-thick sedimentary body on the bedrock (since there 
was 1.20 m 40 m to the south, according to core C7), the shoreline was in 
the vicinity of core C8, to the southwest. 25 m to the southeast, the 
bedrock surface around core C6 was at 1 m b.s.l. around 400 BCE 
(currently 3.50 m b.s.l.), which means that given the thickness of the 
beach, the shoreline was very close to the location of this core (Fig. 10a). 

In the southeastern area of the harbour, the Agora of the Com-
petaliasts was built on a backfill that filled a marsh (Desruelles et al., 
2007, Fig. 10a). West of the agora, P4 reveals that building “X1” was 
erected on sedimentary deposits whose top was at ~0.50 m a.s.l. around 
400 BCE (currently 2 m b.s.l.). This data shows that the shoreline was 
located to the west of this building in the 3rd century BCE (Fig. 10b). 

Inside the Main Harbour bay, the shoreline remained relatively un-
changed after the Antiquity despite the rise of the sea level (Fig. 10c). 
The “Great Mole” to the north provided sufficient protection from 
erosion. In contrast, after the harbour was abandoned, sediments began 
to accumulate, enriched by debris from archaeological excavations. 
North of the bay, the abrasion platform and some archaeological re-
mains west of the “House on the Hill” were submerged due to the rise of 
the sea level (Desruelles et al., 2007). 

5.2. A shallow depth harbour 

During the Second Athenian domination (167-69 BCE), the beach 
was used to haul boats. However, the depth of the draught in the Main 
Harbour bay is difficult to determine due to post-Antique sedimentation. 
Currently, there is a sediment body up to 4.50 m-thick, mainly posterior 
to the Second Athenian domination (Unit D2 in core C7; Fig. 5), over-
lying the bedrock. Considering the bathymetric data provided by 
Ardaillon (1896) and the thickness of these post-Antique deposits, we 
estimate that the draught was between 1 and 2 m inside the Main 
Harbour bay. This hypothesis tends to be confirmed by core C7 (Fig. 5), 
whose stratigraphy shows that, around 400 BCE, a sedimentary layer 
about 1 m-thick covered the bedrock and that the sedimentary floor 
(Unit B) was at ~1.05 m b.s.l. (currently 3.55 m b.s.l.). In addition, 25 m 
southeast of this core, P4 (Figs. 3 and 8) shows that a sedimentary layer 
about 2 m-thick covered the bedrock when building “X1” (Fig. 2) was 
constructed during the Antiquity. Recent research conducted in the 
Roman ports of Ostia and Portus has shown that the minimum naviga-
tional depth required for the circulation of Roman ships was 1.40 m 
(Salomon et al., 2016; 2017). 

To sustain this shallow draught, it is highly likely that the Main 
Harbour was dredged during the Hellenistic period. Many ancient ports 
(e.g. Marseille, Sidon, Tyre, Naples) were dredged to avoid silting up 
(Morhange and Marriner, 2010). However, there is no archaeological 
evidence that this was done in Delos. 

The southern part of the bay was more accessible to boats due to the 
shape of the bedrock. During the last glacial maximum (17,000 to 
21,000 years ago), when the sea level was about 120 m lower than today 
(Lambeck et al., 2014; Benjamin et al., 2017), the Inopos stream carved 
a riverbed in the extension of its emerged valley, heading south (Fig. 7a). 
The part of the strait, located west of the two Rematiaris islets, was 
relatively deep and more suitable for navigation. According to bathy-
metric maps (Gallois, 1910; Service hydrographique et océanographique 
de la Marine, 1986), the sea was shallower between the “Great Mole” 
and the “mikros Rematiaris”, which meant only shallow-draught boats 
could reach the beach, while larger merchant or round ships would have 
remained anchored in the bay (Nakas, 2022). However, dredging ac-
tivities could have potentially deepened the bay. Evidence of harbour 
dredging in Greece during the Roman period has for example been 
highlighted in the port of Lechaion (Morhange et al., 2012). 

6. Synthesis and conclusion 

Our study suggests a revised reconstruction of the Delian coastline on 
the outskirts of the Apollo Sanctuary. It indicates that the Main Harbour 
bay extended less to the north than previously suggested by Ardaillon 
(1896) and Pâris (1916). During the second Athenian domination, the 
“Great Mole” served as a barrier, protecting an area that was probably 
covered with buildings now lost to the sea due to rising sea levels. The 
esplanades of the Agora of Theophrastos and the Agora of the Com-
petaliasts were created by filling in wetland areas with a backfill from 
the end of the 3rd to the end of the 2nd century BCE. These enhance-
ments, which accompanied the growth of transit trade, could also have 
been a result of either the rising sea level or the gradual silting up of the 
port behind the “Great Mole”. The landscape underwent significant 
changes during Antiquity: the submerged structures found in the bay, 
whose purpose remains unknown, may have been associated with 
different phases in the port’s development. The Main Harbour seems to 
have lacked, and only flat-bottomed boats could access the beach. It 
raises several questions: how did larger ships approach the island to get 
to its commercial facilities; which way did they actually sail in order to 
come closer; where indeed did they drop anchor; and then, how were 
they unloaded/loaded (if they even were unloaded). 
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44, École française d’Athènes (dir.). 
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