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A B S T R A C T   

The genesis and distribution of marine notches around the microtidal Mediterranean basin has been widely 
debated in recent years. Here we provide new climate and geomorphological insights into the factors controlling 
notch formation based on the bathymetric distribution of marine notches found in Marseille Bay (NW Medi-
terranean). In this area, the notches exist (i) either near present Mean Sea Level (MSL); or (ii) at ~35 cm below 
the MSL, but with no notch present at higher elevations on the same profile. We investigate the genesis of this 
unusual notch distribution using bio-geomorphological surveys, numerical modelling of nearshore hydrody-
namics and palaeo-climate data. This analysis shows that the submerged notch only occurs in coastal sectors 
characterized by minimal or negligible hydrodynamics. Comparison with the millennial sea-level evolution 
shows that the present elevation of the submerged notch closely matches the sea-level stabilization that occurred 
during the Late Antique Little Ice Age (LALIA, ~1400 to ~1290 BP). During this period, the notch formed in 
sheltered areas of the coast, despite minor wave mechanical action and bioerosion, because relative sea-level 
stability concentrated erosion in the same portion of the cliff for ~400 years. The increased rates of sea-level 
rise over the last 1500 years hampered the formation of a younger notch in sheltered sectors of the coast. By 
contrast, changes in sea-level rise rates did not affect notch formation at exposed sites where the mechanical 
action of waves coupled with intense bioerosion were the major control on notch formation. These data further 
confirm that the preservation of a fossil submerged notch is not only ascribable to co-seismic subsidence but also 
to climatic factors. This has implications for palaeo-seismic assessments of the Mediterranean region.   

1. Introduction 

A peculiar geomorphological feature was found on the seaboard of 
the Frioul Archipelago, situated in the centre of Marseille Bay (NW 
Mediterranean). Along the archipelago’s seaboard we observed a very 
unusual distribution of the marine notch. Over short distances (e.g., 
<250 m) the notch sometimes develops near present mean sea-level 
(msl) while, in other areas, it develops at ~35 cm below the MSL and 
is absent at higher elevations. 

The aim of this paper is to explore the processes controlling this 
peculiar geomorphology, which is very rare in the Mediterranean. We 
coupled bio-geomorphological surveys with hydrodynamic modelling in 

order to understand the drivers of notch formation (or non-formation) in 
the area. The results were further compared with a statistical recon-
struction of the relative sea-level evolution and palaeo-Sea-Surface- 
Temperature data in order to explore possible climatic controls on 
notch formation. 

Marine notches are indentations cut in steep calcareous cliffs at or 
near sea level (Pirazzoli, 1986; Antonioli et al., 2015; Trenhaile, 2016). 
Their genesis and distribution in the Mediterranean have been widely 
debated in recent years (e.g. Evelpidou et al., 2012; Evelpidou and 
PIrazzoli, 2013; Antonioli et al., 2015). A major issue is related to the 
current formation of tidal notches. On the basis of a number of Greek 
case studies, Evelpidou et al. (2012) stated that present-day tidal 
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notches are no longer forming because of the post-industrial accelera-
tion of sea-level rising rates. In particular, this acceleration exceeds the 
thresholds for natural marine bioerosion, leading to the disappearance 
of tidal notches. Antonioli et al. (2015) challenged this hypothesis on the 
basis of the analysis of 73 Mediterranean coastal sites. They argued that 
the development of tidal notches as a mere consequence of midlittoral 
bioerosion (as per Evelpidou et al., 2012) is a simplification that can lead 
to misleading results because other factors can also play a role in notch 
formation including wave action, the rate of karst dissolution, salt 
weathering and wetting and drying cycles. The results of this study 
indicate that midlittoral bioerosion can enhance notch formation and, in 
particular cases, also be the main process of notch formation and 
development (Antonioli et al., 2015). 

The peculiar distribution of the notch along the Frioul Archipelago 
coasts offers a unique possibility to understand the mechanisms of for-
mation, which can be ascribed to chemical dissolution processes in the 
intertidal zone, wetting and drying cycles, biological erosion or wave 
action or, most likely, a combination of these factors. Tectonically, this 
coastal sector is documented to be very stable and a high-resolution 
proxy-based sea-level history for the last four millennia is available for 
the area (Vacchi et al., 2021). 

Fig. 1. A) Geographical location of the Frioul archipelago within Marseille Bay. Blue dot indicates the location of the Marseille tide gauge (MrTG). B) Coastal sites 
investigated in this study. Cr is calanque de Crine, Pp is Pointe Pomégue, Eb is calanque de Eoube, Mg is calanque du Mogiret. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Methods 

2.1. Study area 

The Frioul Archipelago is located off the town of Marseille in the NW 
Mediterranean Sea (Fig. 1A,B). This archipelago is composed of two 
main islands (Fig. 1C): Pomègues (89 ha) and Ratonneau (95 ha), now 
artificially connected, and a third minor island called If (3.5 ha). 

Almost the totality of the archipelago’s coastline comprises plunging 
cliffs carved into Lower Cretaceous limestones (Collina-Girard, 2014). 
Beaches are almost absent with the exception of some gravel to pebble 
deposits found in the inner part of the several deep and fjord-shaped 

narrow bays, locally known as calanques (Collina-Girard, 2014). Semi- 
arid conditions (mean annual rainfall <350 mm of per year) and the 
exposure to strong and frequent NW and SE winds (53 days per year 
>60 km/h) significantly influence the micro-climate of the archipelago 
(Bonnet et al., 1999; Baumberger et al., 2012) known as the driest 
stretch of the Mediterranean French coast. 

The coastal area is tectonically stable as suggested by the negligible 
historical seismicity (Billi et al., 2011). Tectonic stability is further 
confirmed by the present elevation of the last interglacial shoreline (e.g., 
~125 ka, Cerrone et al., 2021) while GPS-derived vertical rates suggest 
that the Marseille bay is presently characterized by stability to minor 
subsidence (<0.5 mm a− 1, Nocquet et al., 2016). 

Fig. 2. (A) Photograph of one of the study 
sites (Crine). The red line indicates those 
areas located in the outer part of the cal-
anques and characterized by the presence of 
the roof notch developing at present msl. The 
green line denotes those areas located in the 
inner part of the calanques and characterized 
by the presence of the submerged notch. The 
arrow indicates the direction of the main 
storm waves and swell. (B, C) Roof notch 
developing in the exposed sectors. (D) 
Absence of the notch along the cliffs located 
in the sheltered areas. (E) Submerged notch 
occurring in the sheltered sectors. MSL is 
Mean SeaLevel. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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2.2. Bio-geomorphological survey 

We carried out two snorkelling surveys in July and September 2018 
in order to map the marine notches along Frioul’s coastline. After a 
preliminary survey, we focused our analysis on four coastal sites where 
the morphologies were particularly well preserved (Fig. 1B). These are 
the calanques of Crine (Cr), Pointe Pomègues (Pp), Eoube (Eb), and 
Morgiret (Mg). These sites, situated on both Pomègues and Ratonneau 
islands, were selected in order to have different geomorphological 
contexts and a wide range wave exposure. During each survey, we 
performed two underwater transects at each site. The first in the outer 
portion of the calanque (very exposed to the open sea) and the second in 
the inner part (very sheltered from the open sea, Fig. 2A). All mea-
surements were carried out with a metric rod and taken during calm sea. 
The times of the measurements were also noted in order to benchmark 
the elevational data to the mean sea level derived from the Marseille 
tide-gauge station (http://refmar.shom.fr/en/marseille), which is situ-
ated <3 km from the archipelago (Fig. 1B). The final accuracy is <5 cm. 
Based on the methodology outlined by Antonioli et al. (2015) and Fur-
lani et al. (2014, 2018), we measured the following morphometric pa-
rameters of the notches: i) the notch width which is the average vertical 
extent of the notch; ii) the inward notch depth which is the average 
horizontal extent of the notch; iii) the roof elevation which is the 
average elevation of the top of the notch with respect to the Mean Sea 
Level (MSL); iv) the floor elevation which is the elevation of the bottom 
of the notch with respect to the MSL. During the survey, we also 
measured water temperature at each site (accuracy ±0.1C◦) in order to 
check for the presence of freshwater springs in proximity to the 
measured notch (Furlani et al., 2014). These data furnished a matrix for 
multivariate statistical analyses (PCA and cluster analysis), which are 
presented in the results section. 

During the surveys, we also mapped the biological zonation of 
benthic organisms occurring on the cliff from the supratidal to the 
subtidal zone (e.g., Gatti et al., 2012). Furthermore, the vertical distri-
bution of the different benthic associations was measured with a metric 
rod and benchmarked to a common datum for the geomorphological 
survey. 

2.3. Late holocene sea-level evolution 

The relative sea-level (RSL) dataset available for the Marseille Bay 
coastal sector mainly derives from radiocarbon-dated samples of fossil 
Lithophyllum byssoides rims (Laborel et al., 1994). This coralline red alga 
forms thick rims in the mid to upper part of the tidal frame (Verlaque, 
2010). In the Mediterranean, presently submerged fossil rims, are 
excellent sea-level indicators (Laborel and Laborel-Deguen, 2005; Faivre 
et al., 2013; 2019). Additional high-resolution sea-level data were 
derived from fixed biological indicators found on the maritime struc-
tures of the ancient harbour of Marseille (Morhange et al., 2001; see 
Supplementary 1). These RSL index points allow high-resolution RSL 
reconstructions in the Mediterranean area (Morhange and Marriner, 
2015; Khan et al., 2015; Vacchi et al., 2016). The RSL history and the 
temporal evolution of RSL rising rates were derived from the recent 
analysis performed by Vacchi et al., (2021, see Supplementary 2A,B). 
These data were obtained using an empirical-Bayesian spatio-temporal 
statistical model applied to a dataset of index points. The methodology is 
detailed in Vacchi et al. (2021). 

2.4. Numerical wave model 

The state-of-the art numerical modelling suite Delft3D (Lesser et al., 
2004) was used to compute wave heights around the Frioul archipelago. 
Although establishing realistic engineering-grade computations was not 
the main objective of this study, the modelling strategy assumed here 
complies with the goal of gaining schematic insights into wave dynamics 
for the northern, western and southern sides of the archipelago. 

That is why simulations were only undertaken with the Delft3D- 
WAVE module, which is based upon the well-known third-generation 
wave model Simulating WAves Nearshore (Holthuijsen et al., 1993; 
Booij et al., 1996; Ris et al., 1999). SWAN is based on the discrete 
spectral action balance equation and is fully spectral (in all directions 
and frequencies), allowing the model to simulate random, short-crested 
waves in coastal regions with deep, intermediate and shallow water. 
Various physical processes are explicitly considered in Delft3D-WAVE, 
like refraction due to depth, bottom friction, as well as depth-induced 
wave breaking. 

2.4.1. Grid, bathymetry and boundary conditions 
Delft3D-WAVE is forced with wave data taken from Cerema’s 

ANEMOC-2 database (Atlas Numérique des Etats de Mer Caiques et 
Côtiers; Tiberi-Wadier et al., 2016), comprising wave hindcasts from 
1979 to 2010. This numerical atlas was produced with TOMAWAC, a 
third-generation spectral wave model (Benoit et al., 1996) forced with 
wind data from the Climate Forecast System Reanalysis (NOAA; Saha 
et al., 2010), and calibrated against buoys and satellite measurements. 
Hourly wave data from 1994 to 1998 taken from the ANEMOC-2 data-
base are subsampled to 3-hourly wave data as input for Delft3D-WAVE. 
As shown by Kulling and Sabatier (2016), Sabatier et al. (2017), and 
Kulling (2017), when compared to the full 30-year timespan covered by 
ANEMOC-2, 1994, 1996 and 1998 are close to a so-called typical 
“normal” year, whereas 1995 and 1997 are considered as “positive 
anomalies” (regarding wave heights). 

Like in previous work dealing with numerical models extending from 
deep water to the nearshore (Kulling et al., 2016; Boudet et al., 2016; 
Kulling, 2017), two bathymetric datasets were used to derive the bottom 
morphology in Delft3D-WAVE. From the coast down to 30/40 m depth, 
the seabed morphology is taken from the Litto3D® database of Shom 
(French National Oceanographic Service), using topo-bathymetric aerial 
LiDAR measurements from 2012 (LADS MkIII and RIEGL VQ-820-G la-
sers combined, see Aleman et al., 2015). Beyond this range, computa-
tions rely on bathymetric surveys from 1977, originating from the Base 
de Données Bathymétrique du Shom (BDBS). The model domain consists 
of several curvilinear grids designed with RGFGRID in order to compute 
wave propagation from deep water (ANEMOC-2 outputs) to the near-
shore. We performed a numerical simulation for the northern, western 
and southern sides of both Pomegue and Ratonneau islands. Thus 
Delft3D-WAVE grids cover all the investigated calanques and finer grids 
are nested into coarser ones (Table 1): it allows more detailed wave 
computations at the edge and inside each calanque. 

3. Results 

3.1. Bio-geomorphological survey 

Results of the snorkelling survey carried out in the four sectors of the 
Frioul Archipelago are presented in Table 2. The morphometric values 
are averages from the two surveys (July and September 2018) with a 
final vertical error of <5 cm. At the exposed site, we observed an 
asymmetric notch characterized by an absent floor and a well-developed 
roof-top (Fig. 2B). The average elevation of the roof varies between ~30 
to ~15 cm MSL at exposed sites. The average elevation retreat point of 
the roof notch (cf. Furlani et al., 2014) ranges from ~5 to ~12 cm above 

Table 1 
Grids locations and resolutions used in Delft-3D-WAVE for the study.  

Site Coarse grid resolution (min. x 
max. Cell side length) 

Fine grid resolution (min. x max. 
Cell side length) 

Crine ~25x27m ~7x7m 
Eoube ~46x73m ~23x23m 

Morgiret ~69x80m ~33x34m 
Pomègues ~94x115m ~21x21m  
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MSL (Table 2 and Fig. 2C). 
The average inward depth of the notch showed a maximum value of 

~80 cm and the whole roof notch profile (from the retreat point to the 
roof) is covered by a biological rim dominated by Lithophyllum byssoides 
(sometime forming the typical trottoir up to ~5 cm thick) and Ellisolandia 
elongata (Fig. 3). E. elongata became dominant at lower elevations, in 
particular between the MSL and ~ − 25 cm. Below this level, we 
observed a transition in the benthic assemblages which are dominated 
by Dictiota dichotoma, Jania rubens and Botryocladia botryoides (Fig. 23. 
Presence of Amphiroa rigida, turf-forming algae, crustose coralline algae 
and sparse Lithophaga lithophaga was also observed. 

At sheltered sites, we observed the absence of a notch at present MSL 
(Fig. 2D). However, we observed a notch located below the MSL. The 
roof of the notch is located at ~ − 12 to ~ − 15 cm msl while the retreat 
point was measured between ~ − 37 and ~ − 35 cm (Fig. 2E). 

The floor of the notch (present but less developed than the roof) 
occurred at average elevations of ~ − 48 to ~ − 51 cm msl. The inward 
depth notch did not exceed ~50 cm. 

The biological coverage at and above the msl is extremely scarce and 
is only characterized by the scattered presence of Patella spp. and by a 
biofilm up to ~20 cm above the MSL (Fig. 2D). Biological coverage in-
creases significantly on the roof of the notch. In particular, the band 
between ~ − 10 to ~ − 20 cm is dominated by crustose calcareous algae 
and sparse Ellisolandia elongate (Fig. 3). At lower depths, we observed a 
progressive decrease of crustose calcareous algae and a gradual increase 
of a sciafic biological association dominated by foliose Peyssonnelia sp., 
Mesophyllum lichenoides and Lithophyllum stictiforme, associated with 
small hydroids and turf-forming algae. This biological zone character-
izes the whole width of the notch and extends down to depths of ~100 
cm. 

Water temperature did not show significant differences between 
sites. In July, we surveyed the changes in temperature between the 
exposed and sheltered sites and found that it was within 0.1 ◦C. In 
September, we observed a maximum difference of 0.3 ◦C between the 
exposed sites and the sheltered ones (Table 2). 

3.2. Wave modelling 

The mean results of the numerical wave modelling are provided in 
Table 2. The complete output of the model is provided in Supplementary 
1. The data indicate a significant difference between the Hsig values 
recorded at the exposed sites and those recorded in the sheltered ones. 
The simulation clearly shows that all the sheltered sites are character-
ized by minimal wave influence with mean Hsig values of between 0.04 
and 0.12 m and maximal Hsig values which do not exceed 1.1 m. At 
exposed sites, the numerical model output indicates that mean Hsig are 
up to 80% higher than in the sheltered ones with maximal Hsig values 
comprised between 0.9 and 3.2 m (Table 2). 

3.3. Statistical analysis 

To compare and contrast the notches on Frioul’s exposed and shel-
tered coasts, we performed multivariate statistical analyses on a data 
matrix comprising the following measurements: T (◦C) July 2017, T (◦C) 
September 2017, Notch retreat point, Notch depth, Roof elevation, Hsig 
(mean), Hsig (max). In the first instance, we performed a Principal 
Components Analysis which clearly differentiated the exposed and 
sheltered notches into two separate groups. PCA axis 1 explains >93% of 
the variability in the data and is loaded by the variables “Notch retreat 
point”, “Notch depth” and “Roof elevation” (Fig. 4). The morphological 
differences between the exposed and sheltered notches of Frioul were 
further reinforced by a Paired group cluster analysis (similarity index =
Euclidean). 

3.4. Late holocene sea-level evolution 

The RSL record for the bay of Marseille is composed of 32 SLIPs 
covering the last ~4.6 ka BP (see Supplementary 2A). In the last 4.0 ka, 
maximal sea-level variation did not exceed ~1.75 ± 0.3 m (Fig. 5A). 
During this time-span, we observed variability in the sea-level rising 
rates which range from ~1.1 mm/y to ~ − 0.1 mm/y (Fig. 5B, Sup-
plementary 2B). In particular, we observed rising rates of up to ~0.6 
mm/y from ~3.5 to ~2.3 ka BP which were followed by a RSL decel-
eration which bottomed out between ~1.5 to ~1.1 ka BP when the RSL 
data show evidence of substantial stability characterized by rates of 
− 0.1 mm/y. During this period, the RSL was between − 0.4 and − 0.3 m 
msl (Fig. 5B). Younger data indicate that RSL rising rates transitioned to 
positive values in the last ~1.1 ka BP with significant rising rates 
observed in the last ~0.3 ka BP (up to~1.1 mm/y). 

4. Discussion 

The marine notches of the Frioul archipelago show an unusual geo-
morphology compared to other areas of the Mediterranean Sea. For 
instance, submerged marine notches are often reported in tectonically 
active coastal areas such as the Aegean Sea (e.g., Evelpidou et al., 2011; 
Kolaiti and Mourtzas, 2016; Karkani and Evelpidou, 2021) or in areas 
characterized by particular hydrological conditions and/or tectonic ac-
tivity such as the mid to northern Adriatic Sea (Furlani et al., 2014; 
Marriner et al., 2014; Faivre and Butorac, 2018). 

To the best of our knowledge, Marseille Bay and the surrounding 
calanques (see Antonioli et al., 2017) are presently the only Mediterra-
nean region showing the occurrence of a notch developing at or slightly 
above msl at exposed sites and another one developing below msl (e.g., 
~ − 35 cm) at sheltered sites. Such variability cannot be ascribed to 
ground movements related to differential tectonic activity for two main 
reasons: i) no major faults are reported in the Frioul area (Nocquet and 
Calais, 2004; Noquet, 2012); and ii) the submerged notch and the one 
measured at the present msl often occur on either side of the same cliff 
(see Fig. 2). 

Table 2 
Mean values of the biological, morphometric and hydrodynamic parameters collected during the field surveys. NRP is the notch retreat point, NW is the notch width, 
NID is the notch inward depth, NRE is the notch roof elevation, NFE is the notch floor elevation. Hsig is the significant wave height. The A transects were performed in 
the outer part of the different calanques while B transects were performed in the inner part (see Fig. 2A).  

Site Biological association NRP (cm) NW 
(cm) 

NID 
(cm) 

NRE 
(cm) 

NFE 
(cm) 

Hsig (mean) Hsig (max) T (C ◦) July T (C ◦) Sept. 

Crine A Exposed 18  80 30  0,28 2,01 19,3 21,7 
Crine B Sheltered − 35 63 47 − 15 − 48 0,04 0,51 19,5 21,9 
Eoube A Exposed 5  41 15  0,13 0,87 19,3 21,7 
Eoube B Sheltered − 37 67 50 − 16 − 51 0,05 0,57 19,3 21,7 

Morgiret A Exposed 15  78 28  0,24 1,79 19,3 21,7 
Morgiret B Sheltered − 34 65 40 − 15 − 50 0,07 0,51 19,3 21,7 

Pomegues A Exposed 12  68 28  0,31 3,17 19,3 21,7 
Pomegues B Sheltered − 35 60 43 − 12 − 48 0,12 1,1 19,4 21,9  
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Our data, which are based on bio-geomorphological surveys and 
numerical modelling, provide fresh insights into the mechanisms con-
trolling the bathymetric variability of marine notches in the Marseille 
area. In fact, the results of the multivariate analyses clearly categorized 
the notches of the Frioul into two groups (>93% of the variance) ac-
cording to their exposed or sheltered position. At all the exposed sites of 
the archipelago, the notch is currently forming in the same way as 
several other Mediterranean coastal areas (Antonioli et al., 2015). At 
these sites, the biological cover in the intertidal and shallow subtidal 
zone show the typical association of exposed Western Mediterranean 
rocky shores with the development of thick rims of Lithophyllum 
byssoides (Laborel et al., 1994; Schembri et al., 2005; Verlaque, 2010). 
Major wave influence at these sites is also confirmed by the numerical 
model which indicates significant wave heights of up to 2 m along the 
exposed seaboard of the archipelago. By contrast, at the sheltered sites 
characterized by i) the virtual absence of wave influence (mean Hsig <

0.07 m and maximal Hsig < 0.6 m) and ii) by a very low density of 
biological cover in the intertidal zone (with an absence of Lithophyllum 
byssoides rims) the notch is absent at present msl but occurs underwater. 

In light of these factors, what is the origin of the submerged notch? Is 

it a currently forming notch or the relict of a past sea-level position? 

4.1. Climatic control on the formation of the submerged notch 

Antonioli et al. (2017) described a similar notch distribution in the 
calanques of Sormiou and Port Miou located <20 km from the Frioul 
archipelago. Here, the exposed cliffs are characterized by a well- 
developed “roof notch” (Antonioli et al., 2015) while they observed 
the presence of a submerged tidal notch in the inner part of these long 
and narrow bays. Antonioli et al. (2017) speculated that the underwater 
notch is currently forming and that its origin is controlled by coastal 
spring water that stratifies above marine water. This freshwater layer 
may play a key role in the chemical dissolution of limestone, as sug-
gested by Furlani et al. (2014) in the northern Adriatic Sea. However, 
the authors did not report in situ measurements of water temperature or 
salinity for either Sormiou or Port Miou. 

Based on our data of the Frioul archipelago, such a hypothesis is 
difficult to corroborate for two main reasons: i) the Frioul area is the 
most arid area of metropolitan France (mean annual rainfall <350 mm 
of per year; winds 53 day per year >60 km/h; Baumberger et al., 2012) 
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and there is no hydrological network on the archipelago; ii) our surveys 
did not show significant variability in the water temperature between 
the exposed and the sheltered sites in either our July or September 
surveys. This suggests the absence of submerged freshwater springs 
which are generally characterized by colder water (Furlani et al., 2014). 

On the basis of our analyses, we provide an alternative explanation 
for the origin of this submerged notch (Fig. 6). Comparison with the 
millennial sea-level evolution shows that the present elevation of the 
underwater notch (~ − 35 cm) closely matches the sea-level stabiliza-
tion that occurred during the Late Antique Little Ice Age (LALIA, ~1400 
to ~1290 BP, Büntgen et al., 2016) when a general cooling of the 
Mediterranean climate triggered a significant deceleration of RSL rising 
rates (Vacchi et al., 2021). Around 1500–1250 BP, Mediterranean Sea 
Surface Temperatures cooled rapidly by around 0.27 ◦C (Marriner et al., 
2022). Oscillations of sea-level rising rates are controlled by the differ-
ential response of the Mediterranean to cooling/warming episodes, as 
demonstrated by the variability of sea-level rise rates observed in the 
Common Era (Faivre et al., 2013; Vacchi et al., 2021). The stabilization 
driven by the LALIA cooling is evident in the Marseilles’ sea-level record 
(Fig. 5B and Supplementary 2B) which shows negligible or slightly 
negative rising rates from 1.5 to 1.1 BP when the paleo-sea level was at 
− 36 ± 18 cm. 

For this reason, we consider the underwater notch of the Frioul 

archipelago to be a relict landform which was shaped during a ~ 400- 
year period of sea-level stability driven by the general cooling of the NW 
Mediterranean Sea (Fig. 6). During this period, the notch formed along 
the coast of the archipelago because the sea-level stability enhanced 
erosion (Evelpidou et al., 2012; Trenhaile, 2016). On the sheltered parts 
of the coast, the absence of significant wave action and low bio-erosion 
were not conducive to notch formation. At these sheltered sites, the 
dominant notch-forming processes probably involved karst dissolution, 
salt weathering and wetting and drying cycles. 

In the last 1000 years BP, data show that RSL rising rates transitioned 
to positive values of up to ~0.5 mm− 1 in the pre-industrial era (e.g., 
before 1850 CE) accelerating up to ~1.1 mm− 1 in the last 150 years 
(Fig. 5B). During this time, we observed a different geomorphological 
response of the coasts of the Frioul archipelago. At the exposed sites, the 
cumulative action of mechanical wave erosion, bio-erosion and chemi-
cal processes led to the progressive formation (still active now) of a 
marine roof notch which continued developing in equilibrium with the 
rising sea level (Fig. 6). For the roof notch, the term “visor” has been 
proposed by Evelpidou et al. (2011) which ascribes erosion to dissolu-
tion by a freshwater spring undercutting a limestone cliff at sea level. 
Our data are not in agreement with this genesis for the roof notch 
because we did not observe the presence of freshwater springs at either 
the sheltered or exposed sites along the Frioul archipelago. The roof- 

Fig. 5. Spatio-temporal reconstruction of the RSL position (A) the rates of sea-level change (B) and Mediterranean SST anomalies (B) for the last 4.0 ka BP in the 
Marseille Bay area (Marriner et al., 2022). 
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notch shape at exposed sites is more likely controlled by the minimal 
sea-level variation (i.e., 35 to 40 cm) occurring in the last ~1.5 ka in this 
sector of the Mediterranean Sea which is controlled by minor isostatic- 
driven land subsidence (~0.25 mm a− 1, Spada and Melini, 2022). This 
probably hampered the formation of the notch floor which remained, for 

the whole period, in the most erosionally active part of the cliff and 
subject to both mechanical and bio erosional processes. The south of 
France was also characterized by significant storm activity during the 
LALIA and the Little Ice Age, which would have further accentuated 
mechanical erosion processes in exposed areas of the Frioul coastline 

Fig. 6. Morphological model to explain the differential notch evolution observed in the Marseille Bay area. RSL is the Relative Sea Level. MSL is the present Mean 
Sea Level. 
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(Sabatier et al., 2012; Shah-Hosseini et al., 2013; Degeai et al., 2015). 
At the sheltered sites, the relative absence of mechanical wave action 

and bio-erosion (intrinsically correlated) were not conducive to the 
formation of the notch in the last millennium. The absence of these 
major erosional processes also influenced the shape of the notch which, 
in contrast to the exposed-site notch, presents both the roof and the 
floor. The floor has probably been preserved due to the increase of sea- 
level rising rates in the last millennium which significantly lowered the 
erosion rates observed in the previous ~400 years of relative sea-level 
stability. These data are in good agreement with those reported by 
Faivre et al. (2019) in the northern Adriatic, where a relict submerged 
tidal notch formed during the post-Roman sea-level stabilization. 

Our data further confirm the complexity of factors affecting notch 
formation, notably along the microtidal Mediterranean coast. We have 
demonstrated that sea-level stability represents an important factor for 
notch formation only at very sheltered sites. By contrast, our data 
indicate that, in the presence of bio-erosional and wave mechanical 
processes, marine-notch formation can occur with rising rates >1 mm− 1 

confirming the results reported by Antonioli et al. (2015) and Trenhaile 
(2016). Furthermore, our data show that marine notches can be pre-
served when submerged without co-seismic events but only in those 
sectors characterized by negligible hydrodynamics and minor GIA signal 
(e.g., characterized by less than ~2.5 m of RSL variation in the last 4.0 
ka). This has important implications for the assessment of the paleo- 
seismicity of the Mediterranean area. 

5. Conclusions 

Trenhaile (2016), demonstrated that notch morphology is the 
product of both regional (e.g., changes in sea level and climatically- 
induced variations in erosional efficiency) and local factors related to 
slope gradient and geological factors including bedrock resistance to 
erosion and the morphology of rock strata. The peculiar distribution of 
the marine notch of Marseille Bay provides new insights into the local 
mechanisms mediating this key carbonate-coast landform. Our data 
indicate that sea-level stability is only an important factor for notch 
formation at sheltered sites. By contrast, mechanical wave action seems 
to be the major factor in controlling notch formation, at least in 
microtidal Mediterranean settings. Future research should focus on a 
wider range of in situ geochemical measurements to explain notch for-
mation and evolution. In particular, it is fundamental to better quantify 
the role of chemical factors such as karst dissolution, salt weathering and 
wetting and drying cycles on notch formation. The Frioul archipelago, 
with its peculiar notch distribution, represents an ideal site for this kind 
of analysis. Finally, our findings indicate that the occurrence of sub-
merged marine notches cannot solely be ascribed to tectonically-driven 
ground movements but that their origin can also be related to climatic 
factors. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.margeo.2022.106929. 
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de la Société Géologique de France 182 (4), 279–303. 

Bonnet, V., Vidal, E., Medail, F., Tatoni, T., 1999. Analyse diachronique des changements 
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