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The remains of the Hellenistic-Roman harbour-town of Lasaia are situated in southeastern Crete on
a headland at the NE end of the bay of Kaloi Limenes, while at a short distance from the shore lies
the island of Traphos. The application of a geoarchaeological method allowed us to reconstruct the
palaeogeography of the coast and track the evolution of  the ancient harbour of  Lasaia from the
Minoan palatial period to Hellenistic-Roman times to the 17th century AD.
The palaeogeography of the seafront of ancient Lasaia followed the relative sea level changes that
occurred during the last 4,000 years along the coast of central and eastern Crete: from a tied island
connected to the mainland by a strip of land when the sea level was at 4.15 ± 0.30 m between ca.
1900 BC and ca. 1600 BC, and 2.50 ± 0.20 m bmsl between ca. 1600 BC and ca. 1200 BC, to a low
promontory jutting out into the sea within a short distance from the coast of Traphos when the sea
level was at 1.20 ± 0.10 m bmsl between ca. 1200 BC and AD 1604, and finally to a narrow shore
opposite the island, when the sea level rose to 0.55 ± 0.05 m bmsl during the AD 1604 earthquake,
which remained there for a significant period of time within the last 400 years.
During the Minoan palatial period, an artificial outer breakwater at the SW end of Traphos Island
appears  to  have  formed  a  protected  harbour  basin.  In  Hellenistic-Roman  times,  the  outer
breakwater  had  been  submerged and  an  inner  breakwater  was  constructed,  leaving  a  channel
between it  and the island that  allowed mariners  to pass from the western to the eastern basin
depending on the weather.  In the early 17th c.,  the island was isolated from the mainland and
provided shelter for Cretan refugees.

Les vestiges de la ville portuaire antique de Lasaia sont situés dans le sud-est de la Crète sur un
promontoire à l'extrémité nord-est de la baie de Kaloi Limenes, à proximité de l'île de Traphos.
Nous avons pu reconstruire la paléogéographie de la côte et reconstituer l'évolution de l'ancien port
de Lasaia de la période minoenne jusqu'au 17e siècle après J.-C. La paléogéographie du front de mer
a  suivi  les  changements  relatifs  du  niveau  de  la  mer  qui  se  sont  produits  au  cours  des
4 000 dernières années. Le niveau de la mer était à -4,15 ± 0,30 m vers 1900-1600 avant J.-C.,
-2,50 ± 0,20 m vers 1600-1200 ans avant J.-C., -1,20 ± 0,10 m entre vers 1200 av. J.-C. et 1604
après J.-C., et enfin vers -0,55 ± 0,05 m lors du tremblement de terre de 1604 après J.-C. Pendant
la période minoenne, un brise-lames à l'extrémité sud-ouest de l'île Traphos semble avoir protégé
un  bassin  portuaire.  À  l'époque  hellénistique  et  romaine,  le  brise-lames a  été  submergé  et  un
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deuxième brise-lames intérieur a été construit, permettant la circulation des navires du bassin ouest
au  bassin  oriental  en  fonction  de  la  météorologie  marine.  Au  début  du  ʚʘʋʋe  siècle,  l'île  était
finalement séparée du continent, offrant un abri à des réfugiés crétois.
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Introduction

Fig. 1 - Map of the southern coast of central Crete

The Kaloi Limenes Bay (‘Fair Havens’), sheltered from the northern and western gales,
lies below the southern foothills of the Asterousia mountain range, between the ancient
town of Lebena (now Lendas) and the stormy coast of Cape Lithino. It would have been
known to Minoan mariners heading towards or sailing from the harbour-town of Minoan
Kommos “in the great days of Minoan sea dominion” (Evans, 1928, p. 85) (Fig. 1).
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Place and location names as mentioned in the text

Source: Evans, 1928

Fig. 2 - Location map of the bay of Kaloi Limenes and site wind rose diagram

The  very  location  of  harbours  and  anchorages  on  the  southernmost  coast  of  Crete
compelled seafarers to find alternative,  well  sheltered places to the east and the west
(Evans 1928). Shelter from most points of the compass is provided by the offshore islands
of Megalonisi, Mikronisi and Traphos, and by the high and steep cliff running towards the
Lithino headland at the southernmost tip of the island (Figs. 1, 2). Flat areas and low
slopes  immediately  surround the  steep  coastline  on  the  landside.  Furthermore,  at  all
times, the barrier formed by the coastline should offer effective protection from the NW
strong winds descending from the highlands of Mount Ida. However, the coast is exposed
to eastern gales, although in such cases small vessels could still anchor, directly protected
by the small islands (Evans, 1928) (Figs. 1, 2).
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Isobaths in metres

Credit: Authors

Fig. 3 - Ancient Lasaia

At  the  NNE  end  of  the  bay,  behind  the  steep  cliff,  on  the  ridge  that  follows  an
(imaginary)  rectilinear  trajectory  towards  the  island  of  Traphos,  lie  the  ruins  of  the
ancient town of Lasaia (Figs. 1, 2, 3, 4, 5). Epigraphic evidence suggests that Lasaia had
become a dependent  polis  of  Gortyn by the  late  2nd c.  BC (Chaniotis,  2000).  Lasaia
flourished during Roman times, serving as one of Gortyna’s harbours. The town had a
Roman  coin  assigned  to  it  as  ‘Thalassea’  (Spratt,  1865)  or  ‘Thalassa’  οr  ‘Alasa’  and
elsewhere  as  ‘Alas’  (Vassilakis,  2000),  which  underlines  its  importance  as  a  hub  for
seafaring.

3
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Plan of the seafront as it now stands

Credit: Authors

Fig. 4 - Ancient Lasaia and the island of Traphos

Lithographic print depicting the bay of Kaloi Limenes

Source : Spratt, 1865
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Fig. 5 - Detailed mapping of the submerged geomorphological and archaeological sea level
indicators with depths below mean sea level (bmsl) in metres

Credit: Authors

In  AD  59,  the  ship  carrying  on  St.  Paul  the  Apostle  on  his  journey  to  Rome,
experiencing  tough sailing  conditions  off  the  coast  of  Crete  in the November  storms,
approached the bay of Kaloi  Limenes. “We moved along the coast with difficulty and
came to a place called Fair Havens, near the town of Lasea” (Acts 27.8). Yet, the harbour
of  Kaloi  Limenes  ultimately  proved unsuitable  for  waiting out  the  winter,  and it  was
decided they would make for Phoenix, a harbour better suited to their purpose. However,
on their way, they were unable to cope with the extremely strong north-easterly wind
blowing off the land, and “were driven along” (Acts 27.12-27.15).

4

In the mid-19th c., between 1851 and 1853, Thomas Spratt travelled around Crete. He
described Kaloi Limenes as an anchorage open to the east and southeast, and safe only in
summer,  suggesting  that  its  name  (Fair  Havens)  could  be  attributed  to  its  sheltered
position in comparison with other more exposed locations on the southern coast of Crete
(Spratt, 1865). It was here that he came across the ruins of ancient Lasaia and an ancient
causeway, stretching towards Traphos from the mainland but ultimately unconnected to
it, with a passage allowing craft to transfer to either side of the bay depending on wind
and sea conditions (Fig. 4). On the island, he also discovered many temporary residences
of the Cretan Greeks in the area who had sought shelter there during the revolution for
independence, and, close to shore on the mainland, a considerable chunk of a Roman
brick  wall,  which  he  interpreted  as  “part  of  a  sea  defence  or  facing  to  support  the
embankment there” (Spratt, 1865, p. 8).

5

Some 70 years later, in 1924, Sir Arthur Evans arrived at the deserted beach of the bay6
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1 - Materials and methods

of  Kaloi  Limenes  (Fig.  1).  Much impressed by the absence of  Minoan  relics,  and the
abundance of remains of Roman amphorae, he commented that the entrepreneurial folk
of  Lasaia  must  have  organised  wine  bars  by  the  harbour,  providing  bountiful
entertainment for the crew of St. Paul’s ship (Evans, 1928, p. 85).

Archaeological  excavations  in  ancient  Lasaia  have  never  been  carried  out,  with  the
exception of a systematic survey conducted by the University of Bristol  in 1971 over a
large  area  from  Ayiofaraggo  to  Lasaia  and  to  Chrisostomos  further  to  the  east.  The
remains of the Hellenistic-Roman town of Lasaia were traced and, along with the harbour
installations (the breakwater and the warehouses on the shore), presented in two plans
(Blackman  and  Branigan,  1975,  p.  29,  31).  Inter  alia,  on  the  western  side  of  the
breakwater, they observed a slightly submerged slab of beachrock, and concluded that,
since antiquity, the sea level had risen only so much as to erode the buildings on the
shore, but that this had been insufficient to cover the breakwater fully (Blackman and
Branigan, 1975).  Blanc (1958), Dermitzakis (1973),  and Flemming and Pirazzoli  (1981)
adopted this view and suggested that the sea level has remained stable since antiquity and
the coastal morphology relatively unchanged over the last 2000 years. After a detailed
survey of the harbour installations of ancient Lasaia and on the basis of geomorphological
features along the coast of the mainland and the island of Traphos, Mourtzas (1990) and
Mourtzas and Marinos (1994) concluded that during the Hellenistic-Roman period the
sea level was 1 m lower than at present.

7

Geoarchaeological  research  and  study  of  ancient  ports  and  anchorages  in  the
Mediterranean  area  allow  us  to  better  understand  the  way  in  which  societies  are
transformed and adapt to changing coastal environments (Marriner et al., 2016). Analysis
of  sediment  records  and  AMS  radiocarbon  dates  (e.g.  Kampouroglou,  1989;
Pirazzoli et al., 1992; Morhange et al., 2001; Kraft  et al., 2003; Marriner et al.,  2008;
Pavlopoulos et al., 2010; Brückner et al., 2017; Carayon et al., 2011; Hadler et al., 2013;
Stock  et  al.,  2013;  Goiran  et  al.,  2014;  Flaux  et  al.,  2017;  Giaime  et  al.,  2017;
Faisse  et  al.,  2018;  Karkani  et  al.,  2018),  and  archaeological  (e.g.  Knoblauch,  1969;
Scranton et al., 1978; Hadjidaki, 1988; Galili et al., 2002; Shaw, 2006) and geophysical
(e.g.  Boyce  et  al.,  2009;  Keay  et  al.,  2009;  Dao,  2011;  Koster  et  al.,  2011;
Papatheodorou et al., 2014) surveys are the most common methods for the reconstruction
of ancient harbour environments.

8

In this paper, as well as in a series of relevant publications on harbour morphologies
and maritime installations of the prehistoric and historic periods along the coast of Crete
and the entire Aegean (Mourtzas, 1988, 2010, 2012c; Mourtzas and Kolaiti, 2013, 2017a,
c, 2020; Mourtzas et al.,  2016; Kolaiti and Mourtzas, 2016, 2020; Kolaiti et al.,  2018;
Kolaiti, 2019), we attempt to explain the interaction between human coastal activity and
the Late Holocene sea level  changes,  as a result  of  the  complex glacio-hydro-isostatic
impacts and vertical tectonics on the sea-land interface. Coastal features, i.e. marine tidal
notches  and  beachrock  formations,  allow  us  to  define  past  sea  levels,  and  precise
archaeological  indicators  found  and  recorded  in  the  narrow  and  wider  area
(Mourtzas, 2012a, b; Mourtzas and Kolaiti, 2020; Mourtzas et al., 2016) allow us to date
the inferred sea levels. The palaeogeographic reconstruction of the seafront of  ancient
Lasaia is based on the determination of the respective sea levels and the measurement of
depths  of  the  current  position  of  the  ancient  harbour  installations.  Finally,  we
demonstrate  how  the  communities  which  settled  in  Lasaia  during  the  Minoan  and
Hellenistic-Roman periods  adapted the harbour installations to each specific  sea level
stand, and that the site was only abandoned when the sea level rise rendered the coastal
morphology  unfavourable  for  mooring  and  anchoring.  Additionally,  an  important
underwater find – the outer rubble mound breakwater – is presented for the first time. Its
age, as inferred from the dating of the sea level during the period it was in use, reveals a
unique Minoan maritime construction. It is the first Minoan harbour to be reported on
the southeast coast of Crete, thus providing new evidence on the ancient seafaring and sea
routes in the Aegean and, consequently, the Eastern Mediterranean.

9
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An  underwater  snorkeling  geological  survey  along  the  seafront  of  ancient  Lasaia
revealed many geomorphological indicators of the past sea levels, i.e. marine tidal notches
and beachrocks, which were mapped using satellite images (Google Earth Pro) and high-
resolution orthophotos at  a scale of  1:500 (Κtimatologio S.A.).  During the underwater
snorkelling  survey,  their  features  were  recorded  and  depths  at  selected  points  were
measured (Fig. 5). All measurements of depths were collected during calm sea conditions
using mechanical methods (measuring tape and invar rod) and were repeated in three
different survey periods (in May 1987, in July 1989 and update of depth measurements in
August  2014).  An  accuracy  of  ±1  cm  along  the  vertical  is  routinely  estimated
(e.g. Antonioli et al., 2007). To account for tides, observational data were reduced for tide
values at the time of surveys with respect to mean sea level, using tidal data from the
Hellenic Navy Hydrographic Service for the closest tide-gauge station of Ierapetra. The
effect of atmospheric pressure on the sea level was corrected using the meteorological
data for the site at the time of surveys (https://www.meteo.gr/).  Therefore,  all  depths
reported herein correspond to depths below mean sea level (bmsl).

10

Marine tidal notches are deep undercuts in rocky, mainly carbonate, cliffs. They are
formed in the intertidal zone during a period of relative sea level (rsl) stability through a
complex biological,  physicochemical  and mechanical  erosional  process.  The  mean sea
level is slightly below or at the same elevation as the notch base, which statistically during
much of the tidal pattern is submerged and only slightly protrudes from the mean low
water.  The  inward  depth  depends  on  the  duration  of  the  rsl  stability  period,  with
maximum  depth  at  mean  high  water  (e.g.  Carobene,  1972,  2015;  Higgins,  1980;
Pirazzoli,  1986b;  Kelletat,  1997,  2005;  Furlani  et  al.,  2011;  Antonioli  et  al.,  2015;
Kolaiti, 2019).

11

Beachrocks  are  formed  by  the  cementation  of  coastal  sediments,  including
anthropogenic  deposits,  during  periods  of  rsl  stability  (e.g.  Hopley  1986;
Strasser  et  al.,  1989;  Bernier  et  al.,  1997;  Plomaritis,  1999;  Turner,  2005;
Vousdoukas  et  al.,  2007;  Erginal  and  Öztürk,  2012;  Mauz  et  al.,  2015;
Avcioğlu et al., 2016). Cementation takes place in the coastal zone that is bounded at the
seaward end by the mean low water (i.e. the lowermost limit of the intertidal zone) and at
the  landward  end  by  the  uppermost  limit  of  the  swash  and  backwash  zone  (e.g.
Vousdoukas  et  al.,  2007;  Desruelles  et  al.,  2009;  Vacchi,  2012;  Mauz  et  al.,  2015).
Different  sea  level  stands  form  distinct  beachrock  slabs  at  various  elevations  that
correspond  to  different  generations  of  a  fossilized  palaeoshoreline
(e.g. Vousdoukas et al., 2007; Desruelles et al., 2009; Vacchi, 2012; Mauz et al.,  2015).
The  loose,  unconsolidated,  sandy/sandy-gravelly  sediments  laid  on  the  sea  bottom
between  two  different  beachrock  generations  represent  a  period  of  rsl  change  (e.g.
Desruelles et al., 2009). Fossils, organic material or archaeological remains embedded in
a  beachrock  are  a  ‘terminus  post  quem’  for  the  beachrock  formation,  postdating  the
embedded material (Kolaiti, 2019).

12

The  intertidal  diagenetic  environment  of  beachrocks  has  been  identified  on  the
adjacent coast of Messara (Gifford and Reese, 1995; Neumeier, 1998), and in other coastal
locations  of  Crete,  e.g.  Ierapetra,  SE  Crete  (Dermitzakis  and  Theodoropoulos,  1975),
Damnoni,  SW  Crete  (Neumeier  et  al.,  2000),  Platanias,  NW  Crete
(Petropoulos et al., 2016).

13

The depths of the various beachrock generations were measured following the method
suggested  by  Kolaiti  (2019).  During  the  underwater  snorkeling  survey,  depths  at  18
selected points of the beachrock generations were obtained, covering a length of 104 m
(Fig. 5). The depth of the base and top of the seaward end of each beachrock generation
was measured by mechanical methods using measuring tape and invar rod. The average
depth of repeated measurements in the same beachrock generation, after correction for
tide and pressure, was used in the analysis and interpretation of data. To determine the
former sea level  stands, the depth of  the  seaward base of  each beachrock generation,
representing  the  low tide  of  a  former  sea  level  (Kolaiti,  2019),  was  used.  Convincing
evidence in the study area is the coincidence of the depth of the base of the marine notch
at 1.25 m bmsl with the depth of the seaward base of the younger beachrock generation
(IV) at 1.25 ± 0.05 m bmsl, thus clearly indicating that both were formed during the same
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2 - Relative sea level changes along the
coast of central and eastern Crete

former sea level.
The ancient harbour installations were mapped using satellite images (Google Earth

Pro) and high-resolution orthophotos at a scale of 1:500 (Κtimatologio S.A.). During the
underwater snorkelling survey, depths were obtained at 20 selected points of the ancient
structures related to the former sea levels (Fig. 5). Based on robust evidence of maritime
constructions  and  harbour  installations  that  were  partially  built  below  sea  level
throughout the microtidal Aegean Sea at some point during an extensive period from the
Final Neolithic (4500 BC) to Modern times (19th c.  AD), a mean elevation of the top
surface of a dock, jetty or breakwater of 0.60 ± 0.30 m above the mean sea level during
the  period  it  was  in  use  is  suggested  (e.g.  Auriemma  and  Solinas,  2009;
Mourtzas et al.,  2016; Benjamin et al.,  2017; Seeliger  et al.,  2017;  Kolaiti,  2019).  The
submerged remains of buildings and other coastal structures (e.g. tanks, walls etc.) that
were constructed on land and their use is not directly connected with a former sea level
(i.e. fishtanks), provide only evidence of the rsl rise in a particular coast but they do not
determine the precise amount of it.  If the archaeological age of the ancient remains is
known, then they are a ‘terminus post quem’ for the rsl change that certainly occured after
their construction (e.g. Benjamin et al., 2017; Kolaiti, 2019).

15

The Late Holocene history of the rsl change along the coast of Crete began 4.200 ± 90
years ago (Lamporel et al., 1979; Pirazzoli et al., 1982; Mourtzas et al., 2016), with the sea
level  5.15  m  lower  than  at  present  (Figs.  6,  7).  On  the  Phalasarna  coast
(westernmost Crete), a marine notch formed that is today uplifted at +4 m above mean
sea level (amsl). On the eastern coast of Crete, this sea level formed the earliest beachrock
generation on the coast of Ierapetra (SE Crete) and Palaikastro (easternmost tip of Crete)
and  in  the  bay  of  Sitia  (NE  Crete),  all  today  submerged  at  6.55  ±  0.55  m  bmsl
(Mourtzas et al., 2016). This indicates that the eastern part of Crete has sunk by 1.40 m
more than the western part (Figs. 6, 7).

16

A paroxysmal subsidence event followed that led to the sinking of the entire island by
2.30 to 2.60 m (Figs. 6, 7). On the Chrysoskalitissa coast (westernmost part), a marine
notch formed during this sea level at 2.90 m bmsl, presently uplifted at +6.30 m amsl and
dated to 3870 ± 90 BP (Lamporel et al., 1979; Pirazzoli et al., 1982). On the eastern coast,
a marine notch presently submerged at 3.95 ± 0.25 m bmsl and the respective beachrock
generation at 4.30 ± 0.20 m bmsl have been dated to between 3900 and 3600 years
before present, on the basis of archaeological sea level indicators (Mourtzas et al., 2016).
The 1.10 m-difference in elevation between the geomorphological sea level indicators of
the western and eastern part of the island is indicative of a higher subsidence rate of the
eastern part during this period (Figs. 6, 7). In the eastern part of the island, this sea level
stand remained stable for about 300 years, and its change to the next stand coincides
with the wider neotectonic upheavals in the area of the South Aegean that accompanied
the strong eruption of the Thera volcano around 1600 BC (for discussion of the date of
eruption  see  e.g.  McCoy  and  Heiken,  2000;  Dimopoulou-Rethemiotaki,  2004;
Sakellarakis,  2009;  Hardman,  2009;  Papadopoulos,  2011;  Soles  et  al.,  2017;
Macdonald, 2017; Mourtzas and Kolaiti, 2017b). At the same time as the collapse of the
Minoan Protopalatial period around 1600 BC, there was an abrupt change in sea level,
which is dated by archaeological indicators (Fig. 6): In the bay of Kato Zakros, this change
is evidenced by the brackish groundwater rise in the remains of the building, destroyed in
the mature LM IA,  on which the LM IB palace  was  constructed,  and also  the partial
submersion of the natural harbour morphology of the bay (Mourtzas and Kolaiti, 2017b).
On the  coast  of  Minoan  Mochlos,  the  strip  of  land that  connected the  islet  with  the
mainland significantly narrowed after 1600 (Mourtzas et al., 2016). Moreover, the islet
that offered protection from the NW winds and favoured the mooring and anchoring in
the great naval establishment of Minoan Kommos was significantly reduced (Mourtzas
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Fig. 6 - Comparison between the 14C dated marine notches of the westernmost part of
Crete, which formed during ten subsidence tectonic events and then uplifted during the
tectonic event of 1550 ± 80 ÷ 1595 ± 70 BP (AD 365 earthquake), and the submerged marine
notches and beachrocks of the eastern part of Crete, dated using archaeological sea level
indicators

The mean depths (bmsl) and dating of the four marine notches and the corresponding beachrock generations of
central and eastern Crete are shown on the right half plot. The elevations (amsl) and dating of the uplifted
marine tidal notches of western Crete are shown on the upper left plot. The lower left plot indicates the depths
(bmsl) of the marine notches of western Crete when the sea level on the entire island was at 1.25 ± 0.05 m
bmsl. The yellow arrows indicate the subsidence of the entire island between 4200 ± 90 BP and 1595 ± 70 BP.
The green arrow indicates the co-seismic uplift of the western part during the AD 365 earthquake. The red
arrows indicate the subsidence of the entire island during the AD 1604. During the AD 365 earthquake, the
western part of Crete separated from the eastern part along the neotectonic graben of Spili and uplifted by 9 m
(after Mourtzas et al., 2016). Shown on the map of Crete (top left) are the locations of the archaeological sea
level indicators and the separation of western and eastern part of Crete along the Spili fault zone (modified from
Mourtzas and Kolaiti, 2020). BP: for radiocarbon dating, yr bp: years before present (indirect dating).

Credit: Authors

Fig. 7 - Relative sea level curves for western and central and eastern Crete during the Late
Holocene

and Kolaiti, 2020).
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As deduced from beachrock data (blue line) and marine notches data (magenta line). The orange line indicates
the subsidence on the NW tip of Crete before the AD 365 uplift, when the marine notch of 1550 ± 80 BP was at
1.25 ± 0.05 m bmsl (after Mourtzas, 2012a, b; Mourtzas et al., 2016). Error bars indicate time and depth
uncertainties. Historical periods and major catastrophic events are also reported. BP: for radiocarbon dating, yr
bp: years before present (indirect dating).

Credit: Authors

On the western coast of Crete, the next observed sea level stand is dated to around
3400 ± 70 BP and is the result of an abrupt rsl rise of 0.50 m (Figs. 6, 7). Clear evidence is
a marine notch on the Phalasarna coast, formed during a sea level 2.40 m below present
and now uplifted at +5.90 m amsl (Lamporel et al., 1979; Pirazzoli et al., 1982). In the
eastern part of Crete, both the marine notch observed all along the coast at 2.70 ± 0.15 m
bmsl and the widespread beachrock generation at 3.10 ± 0.30 m bmsl have been dated to
between 3600 and 3200 years  before  present on the basis  of  archaeological  sea  level
indicators (Mourtzas et al., 2016; Mourtzas and Kolaiti, 2017b, 2020) (Figs. 6, 7). This
400 year-period coincides with the Minoan Neopalatial period.  This sea level  stand is
evidenced by the brackish groundwater rise in the archaeological remains and the water
supply  installations  of  the  New  Palace  of  Kato  Zakros  (N.  Platon,  1974;  L.
Platon, 2004, 2010), as well as the entire submersion of the natural harbour morphology
on the sea front of the Minoan settlement (Mourtzas and Kolaiti, 2017b). The change to
the next sea level stand is connected with the demise of the Minoan centres of Crete and
can be attributed to the destructive co-seismic tectonic events between 1225 and 1175 BC
(Mourtzas and Kolaiti, 2017b). Around 1200 BC, the flourishing harbour of Kommos was
abandoned, when the islet in front of Kommos settlement was entirely submerged, thus
no longer protecting the coast from the winds. Similarly,  the end of the settlement of
Mochlos is placed around 1250 BC (Brogan and Smith, 2011), when the narrow strip of
land that linked the islet of Mochlos with the mainland during the Bronze Age was also
entirely submerged. On the western coast of Crete, the marine notches that formed during
a sea level  2.50 m lower  than at  present between 3330 ± 80 BP and 3290 ± 70 BP
(Lamporel et  al.,  1979)  seem to be  consistent with the corresponding sea level  of  the
eastern part dated to between 3600 and 3200 years before present (Mourtzas et al., 2016)
(Figs. 6, 7).

18

After  3290  ±  70  BP,  seven  successive  paroxysmal  tectonic  events  resulted  in  the
westernmost coast of Crete subsiding by totally 1.20 m. The sea level rose to 1.25 m lower
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than  at  present  between  1880  ±  70  and  1595  ±  70  BP  (Lamporel  et  al.,  1979;
Mourtza et al.,  2016) (Figs. 6, 7). Six marine notches with a difference in elevation of
0.20 m between them were formed during this  extended period,  from the end of the
Minoan period (1200 BC) to the Roman domination of the island (late 1st c. AD). The
notch datings (Lamporel et al., 1979) clearly indicate a repetition of the vertical tectonic
movements  every  400  years  approximately  for  the  three  earliest  events  and  every
150 years approximately for the three most recent. During the same period, the eastern
part of the island subsided to almost the same extent as the western part. Both the marine
notches observed all along the eastern coast at 1.20-1.30 m bmsl and the corresponding
beachrock  generations  at  1.35  ±  0.20  m  bmsl  determine  a  sea  level  stand  at
1.25 ± 0.05 m bmsl (Figs. 6, 7). Based on archaeological sea level markers and historical
sources,  this  sea  level  stand  is  dated  to  the  period  between  400  BC  and  AD  1604
(Mourtzas, 2012a, b; Mourtzas et al., 2016). Robust evidence is provided for the following
(Fig.  6):  the  submerged  Classical  temple  of  Samonio  Athena  at  Cape  Sidero,  the
Hellenistic and Roman harbours of Chersonisos, Ierapetra and Lasaia, the Roman fish
tanks and other maritime installations along the coast of eastern Crete, and the Byzantine
and  Venetian  coastal  installations  at  Elounda  and  Rethymno  (Blackman  and
Branigan,  1975;  Mourtzas,  1990;  Mourtzas  and  Marinos,  1994;  Mourtzas  and
Kolaiti, 2017b). According to historical sources, the AD 1604 paroxysmal event resulted in
a rsl rise of 0.70 m (Mourtzas, 2012a, b).

When  the  sea  level  was  at  1.20  ±  0.10  m  bmsl,  Crete  was  shocked by  the  severe
earthquake of July 21, AD 365 (Pirazzoli, 1986a; Guidoboni et al.,  1994).  This seismic
event split the island into two parts along the neotectonic graben of Spili (Figs. 6, 7). The
uplifted  marine  notches  at  1.00  ±  0.15  m  amsl  on  the  Melambes  coast  (S  Crete,
easternmost tip of the western tectonic block) and at 0.35 ± 0.05 m amsl on the Petri
Geraniou  coast  (N  Crete,  easternmost  tip  of  the  western  tectonic  block)  both  dated
around AD 360, and the submerged Roman fish tanks and the related geomorphological
features on the Messara coast (S Crete, westernmost tip of the eastern tectonic block) and
the slipway on the Rethymno coast (N Crete,  westernmost  tip  of  the eastern tectonic
block) precisely define a NW-SE trending tectonic boundary, which separates the western
from the eastern part of Crete and corresponds to the neotectonic graben of Spili and its
north  and  south  prolongation  (Fig.  6).  As  a  result  of  the  AD  365  earthquake,  the
westernmost coast of the island uplifted by 9.15 ± 0.20 m amsl and tilted north-eastwards
(Laborel  et  al.,  1979;  Pirazzoli  et  al.,  1982;  Pirazzoli  1986a;  Mourtzas,  1990;
Mourtzas et al., 2016). Geomorphological and precise archaeological sea level indicators
east  of  Spili  graben  such  as  the  Roman  fish  tanks  (Mourtzas,  2012a,  b)  clearly
demonstrate that the sea level remained stable at 1.25 ± 0.05 m bmsl after the AD 365
earthquake  (Mourtzas,  2012a,  b).  Based  on  historical  reports  (Buondelmonti,  1415;
Spratt,  1865),  (Mourtzas,  2012a,  b)  concluded  that  the  submersion  of  the  Roman
(ca. AD 1-400) fish tanks in Matala Bay and of the entire eastern Crete occurred at some
time between 1415 and 1865 and attributed the coastal subsidence to the 1604 earthquake
(Mourtzas et al., 2016).

20

The tidal notch at 1.25 ± 0.10 m bmsl on the south coast of western Crete (Damnoni)
and  the  youngest  beachrock  generation  with  the  ruins  of  the  AD  365  earthquake
embedded in it (Phalasarna, ancient harbour entrances) at 1.25 ± 0.15 m bmsl, which is
steadily observed throughout the western part of the island, clearly indicate that the 1604
subsidence  applies  to  the  entire  island.  The  submerged  Venetian  slipway  on  the
Rethymno coast  at  1.55  m bmsl  and the inundated floors  of  the  Venetian quarries of
Koumpes,  Stavros,  Kalathas  and Agioi  Apostoloi  on  the  north coast  of  western Crete
(Fig.  6) suggest that the sea level  formed after the AD 365 co-seismic uplift remained
stable until the late Venetian period. The western part of Crete sunk uniformly along with
the eastern part during the 1604 earthquake (Mourtzas et al., 2016) (Figs. 6, 7).

21

The 1604 paroxysmal event resulted in an rsl rise of 0.70 m (Mourtzas, 2012a, b). A
marine notch recorded all along the eastern coast at 0.45-0.65 m bmsl determines a sea
level stand at 0.55 ± 0.05 m bmsl and also provides an estimate of the 1604 co-seismic
subsidence  of  the  island.  The submerged salt  pans of  Poros Eloundas,  the  slipway of
Avlaki at Chania peninsula and the millstone quarry near Palaeochora (Fig. 6), all dated
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3 - Description of ancient Lasaia and its
seafront

3.1 - The ancient harbour-town

Fig. 8

(a) Aerial view of ancient Lasaia and the island of Traphos from the SW. (b, c) Views of the Hellenistic-Roman
inner breakwater and Traphos from the North. (d, e, f) Underwater views of the Minoan outer breakwater at the
SW edge of Traphos island. (g) Underwater view of the submerged Hellenistic inner breakwater. (h) The two
submerged tidal notches on the underwater portion of the fault plane on Traphos. (i, j) The tidal notch at 1 m to
1.20 m bmsl on the boulders of the inner breakwater. (k) The submerged younger beachrock generation (IV). (l)
The intermediate coarse beachrock (III) that underlies beachrock (IV), west of the inner breakwater.

after 1604 (Makrakis 2006; Mourtzas et al., 2016; Antonioli et al.,  2017, respectively),
allow us to date this sea level stand to the 17th c. (Mourtzas et al., 2016). The last change
in  sea  level  to  its  current  position  happened  at  some  time  before  1924
(Mourtzas et al., 2016) (Figs. 6, 7).

The Minoan occupation in the wider area is mainly limited to a small farmstead on the
height  of  the  headland,  west  of  Kaloi  Limenes  village,  which  may  have  seen  some
occupation in Middle Minoan times, and to four tholoi of the Early Minoan period east
and west of ancient Lasaia (Blackman and Branigan, 1975). Although no trace of a related
Minoan settlement was found there, the presence of the tholoi suggests an earlier Minoan
occupation of the site located near a well-known source of low-grade copper and with a
beach suitable for the landing of the small boats (Blackman and Branigan, 1975).

23

The ridge of  the small headland facing the island of Traphos is  separated from the
coastal zone by a 35 m-high steep cliff, forming a 20 m-wide sandy-pebble shore at its
foot and a narrow smooth rising strip at its top (Figs. 1, 2, 3, 5, 8a, 9). The ancient town
developed on the ridge, occupying an area of 25,000 m2, bounded on the east by a deep
ravine and on the west by a steep slope dipping towards SW.
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Source: Photo a: https://www.tripinview.com/en, photos b, c, d, e, f, g, h, I, j, k, l: Nikos Mourtzas

Fig. 9 - Satellite image of the seafront of ancient Lasaia

Source : Map data: Image © 2020 Google Earth Pro, European Space Imaging, date of image: 22.07.2015,
accessed 15.5.2018

3.2 - The seafront and the ancient harbour works

The earliest finds of the settlement date to the end of the 4th c. - mid-3rd c. BC; the
town flourished until  the Late  Roman period (late 5th c.  AD).  Lasaia  was most likely
dependent on Gortyna, initially the capital of the Roman senatorial province of Crete and
Cyrenaica and later of the province of Crete. Its economy was connected with the stone
quarries  and  deposits  of  copper  and  other  minerals  in  the  neighbouring  area  of
Chrisostomos. The harbour installations of Lasaia coupled with its location suggest that it
served as a  harbour-town on the exposed south coast of  Crete,  home to from 400 to
500 people (Blackman and Branigan 1975, p. 36).

25

Remains of at least five large buildings, probably warehouses, are located on the shore.
The walls of the warehouses were made of rubble and irregular stone blocks bound with
mortar, parts of which are still standing up to a height of 3 m to 4 m. The back of the walls
touches the rocky slope, whereas the seaward side is completely or partially eroded. The
interior of the warehouses is filled with fallen materials from the eroded cliff. Remains of
buildings  were  also  found  in  the  ravine,  at  the  foot  of  the  eastern  slope  of  the  cliff
(Figs. 3, 5). On the top of the headland, there are clear traces of buildings, among them a
church with a large apse, a nave and two aisles, a group of buildings that were presumably
the  houses  of  merchants,  a  temple,  a  complex  building  with  a  courtyard  and  other
constructions such as a cistern lined with mortar, which was supplied with water by an
aqueduct tracing about 600 m to the east to its source (Blackman and Branigan, 1975).
The Hellenistic acropolis was behind and above the town to the north, on a flat-topped
hill with steep slopes (Figs. 3, 5). The Classical to mid-Hellenistic cemetery was located
west of the ancient town (Fig.  2). Further north, an undefined number of tombs were
most  likely  used  during  the  Roman  period.  A  small  Hellenistic-Roman  farmstead
overlooking Lasaia  was  found on a  raised knoll  NNW of  the  ancient  town (Blackman
and Branigan, 1975).

26

Traphos  is  a  small  elongated  island  composed  of  marble,  with  a  215  m  long  axis
oriented NE-SW, a 130 m short axis and a maximum elevation of 22 m. It is crossed by a
fault plane in a NE-SW direction dipping towards the west with a visible throw of 7 m that
separates  the elevated  eastern part  of  the  island from the western part.  The distance
between  the  island  and  the  nearby  shore  is  about  100  m  at  its  narrowest  point.  A
submerged  reef  about  50  m  long,  with  its  top  at  0.30  m to  2.10  m  bmsl  is  the  NE
submarine  extension  of  the  island.  A  slightly  inclined,  up  to  10  m-wide,  rocky  shelf
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4 - Geomorphological and archaeological
indicators of the rsl change

4.1 - Geomorphological indicators

Fig. 10

(a) Cross-section of the relatively protected, microtidal, western coast of the strip of land consisting of sand and
pebbles. (b) When the sea level was at 4.15 ± 0.30 m bmsl, the beachrock generation (II) was cemented in the
intertidal and supratidal zones. (c) A rsl rise of 1.65 m sunk the earliest beachrock generation (II). (d) In the
intertidal and supratidal zones of the new sea level at 2.50 ± 0.20 m bmsl, the new beachrock generation (III)
was formed. (e) As a result of the constant supply of sediments, a large part of beachrock slab (III) was covered

located at 1 m bmsl surrounds the island and ends at a steep rocky cliff which plunges into
the seafloor at the depths of 6 m and 12 bmsl, west and east of the island, respectively
(Figs. 5, 9).

At  the  SW  edge  of  the  island,  a  rockfill  142  m long,  77  m wide  and 7.50 m high,
composed  of  boulders  up  to  2  m  in  diameter,  forms  an  artificial  breakwater  (‘outer
breakwater’) prolonging the island towards the west. The top of the rockfill is at 2.30 m
bmsl and its base reaches 10 m bmsl (Figs. 5, 8d, e, f, 9).

28

A second breakwater (‘inner breakwater’) 96 m long and up to 11 m wide, composed of
boulders up to 2.50 m in diameter, is observed between the island and the nearby coast. It
runs for 76 m towards SSE, with its top at 1.10 m to 1.30 m bmsl. In its central section, at
least  30  boulders  protrude  from  the  sea.  It  then  turns  SW for  20  m and is  entirely
submerged  at  1  m bmsl,  leaving  a  channel  12  m wide  and  2.90 m  deep between  its
southern end and the northern coast of the island (Figs. 5, 8a, b, g, 9). The eastern part of
the breakwater is founded on a nearly flat surface 40 m wide, at a mean depth of 3 m bmsl
and ending in a slope that appears to be covered by a protective rockfill.  Between the
rockfill and the NE undersea extension of the island, there is a 20 m-wide channel with a
maximum depth of 8.40 m bmsl (Figs. 5, 9).

29

On the coast of Kaloi Limenes, 2.3 km west of Lasaia, Mourtzas (1990) identified three
submerged marine tidal notches with their base at 0.50 m, 1.10 m and 3.70 m bmsl. At a
distance of 12 km further east, around the limestone cape of Trachoulas, three submerged
notches  were  also  identified.  On  the  western  cliff  of  the  cape,  these  are  observed  at
0.50 m, 1.10 m and 3.90 m bmsl and on the eastern cliff at 0.40 m and 1.10 m bmsl, while
a broad marine terrace was identified between the depths of 3.10 m and 4.0 m bmsl. The
three notches were also observed at Tripiti Cape, 1.5 km further east, with their base at
0.50 m, 1.30 m and 3.70 m bmsl.

30

Two submerged marine tidal  notches run along the underwater portion of the fault
plane on Traphos Island, with their base at 0.60 m and 1.25 m bmsl. The deeper notch is
also incised in the boulders of the inner breakwater with its base at 1.20 m bmsl and an
opening of 0.40 m (Figs. 5, 8h, i, j, 10).
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by a layer of sand and pebbles. (f) The sea level rose by 1.30 m and, at the new sea level stand, the Hellenistic
inner breakwater was constructed. (g, h) In the intertidal and supratidal zones of the new sea level stand at
1.20 ± 0.10 m bmsl, beachrock (IV) was cemented over beachrock (III), incorporating the boulders of the
Hellenistic inner breakwater. The tidal notch at 1.20 m bmsl was incised on the fault plane of Traphos and on
the boulders of the inner breakwater. (i) The sea level rose by 0.70 m at 0.55 ± 0.05 m bmsl forming the tidal
notch of 0.60 m bmsl on the fault plane of Traphos. (j) After the recent rsl rise by 0.55 m, the sea level shifted to
its current stand. The tidal notches and the three beachrock generations submerged below the sea level. The
earliest beachrock (II) was eroded and broken into large pieces over time. The depths of the base of the tidal
notches and the seaward base of the beachrock generations correspond - with minor deviations - to the mean
sea levels of 4.15 ± 0.30 m, 2.50 ± 0.20 m, 1.20 ± 0.10 m and 0.55 ± 0.05 m bmsl, during which they were
formed.

Credit: Authors

4.2 - Archaeological markers

5 - Interpretation and discussion

On  the  sandy  beach  of  Kaloi  Limenes,  an  800  m  long  beachrock  generation  has
developed. It has a width of 30 m to 55 m and a thickness of 1.10 m to 1.20 m at its
seaward end. The average of seven depth measurements at the top and base all along the
length of the formation is 3.30 ± 0.15 m and 4.40 ± 0.30 m, respectively.

32

Three  distinct  beachrock  generations  have  developed  along  the  seafront  of  ancient
Lasaia (Figs. 5, 8k, l, 9, 10). Remnants of the earliest and deepest generation (II) appear
up to a depth of 3.80 m to 4.30 m bmsl. The intermediate and coarse generation (III)
underlies the younger beachrock generation (IV) and can only be seen west of the inner
breakwater. It is up to 1 m thick with a seaward base at 2.40 m to 2.60 m bmsl.  The
younger beachrock generation (IV) is  0.20 m thick and its  seaward base  is  at  1  m to
1.30 m bmsl. A number of Hellenistic and Roman potsherds and the boulders of the base
of the inner breakwater have been embedded in it (Figs. 5, 8k, l,  9).  The cementation
process and evolution of the three beachrock generations in relation to the rsl rise are
shown on Fig. 10.

33

The following archaeological sea level indicators were identified in the study area: (a)
the two submerged breakwaters; that is, the outer rockfill  on the SW edge of Traphos
Island with its upper surface at 2.30 m bmsl, and the inner rockfill between the island and
the nearby coast with its upper surface at 1 m bmsl, (b) the submerged walls on the shore
at 0.10 m bmsl, and (c) the submerged base of a tank coated with mortar, now located at
0.55 m bmsl between the shore and the inner breakwater (Figs. 5, 8d, e, f, g, 9).

34

In the narrow and wider coastal area of ancient Lasaia, the three marine notches and
beachrock generations clearly determine four distinct sea level stands during which the
geomorphological features were formed.

35

The  deepest  marine  notch  on  the  rocky  limestone  cliff  of  Kaloi  Limenes  and  the
corresponding deepest notch at Trachoulas and Tripiti Cape at 3.85 ± 0.20 m bmsl, as
well as the deepest beachrock generation at 4.40 ± 0.30 m bmsl, identify a mean sea level
during which they were formed of 4.15 ± 0.30 m.

36

The intermediate beachrock generation at 2.40 m to 2.60 m bmsl, which borders the
inner  breakwater  of  the  ancient  harbour,  determines  a  second  sea  level  at
2.50 ± 0.20 m bmsl.

37

The  intermediate  submerged  marine  tidal  notch  on  the  Kaloi  Limenes  coast  and
Trachoulas and Tripiti Cape, the deepest notch on the rocky cliff of Traphos and on the
boulders of the inner breakwater at 1.10 m to 1.30 m bmsl, and the younger beachrock
generation with intergrated boulders of  the  inner ancient breakwater at  1.25  m bmsl,
determine a third sea level stand at 1.20 ± 0.10 m bmsl.

38

Finally, the marine tidal notch on the Kaloi Limenes coast, Trachoulas and Tripiti Cape
and  Traphos  Island  at  0.50  m  to  0.60  m  bmsl  identifies  a  younger  sea  level  at
0.55 ± 0.05 m bmsl.

39

The  four  sea  level  stands  identified  in  the  –  wider  and  narrow  -  study  area  at
4.15 ± 0.30 m, 2.50 ± 0.20 m, 1.20 ± 0.10 m and 0.55 ± 0.05 m bmsl are consistent with
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6 - Palaeogeographic reconstruction of
the seafront of ancient Lasaia

6.1 - Middle and Late Bronze Age

6.1.1 Protopalatial period (ca. 1900 - ca. 1600 BC)

Fig. 11 - Palaeogeographic reconstruction of the seafront of ancient Lasaia between 1900
BC and 1620 BC

the sea level stands that have been determined throughout the entire central and eastern
coast of Crete (Figs. 6, 7), as detailed in section 3 above.

The dating of the above sea level stands can be indirectly deduced from the comparison
of their elevations with the functional elevation of the coastal archaeological markers at
35 locations throughout the coast of Crete (Mourtzas, 2012a, b; Mourtzas  et al., 2016;
Mourtzas and Kolaiti, 2017b, c). As previously mentioned in section 3 above, the earlier
sea level stands at 4.15 ± 0.30 m and 2.50 ± 0.20 m bmsl have been linked to the Minoan
Protopalatial (1900-1600 BC) and the Neopalatial (1600-1450 BC) periods, respectively.
The relative change to the next sea level at 1.20 ± 0.10 m bmsl occurred between 1200 BC
and the 4th c. BC. This sea level stand is definitely associated with characteristic ancient
coastal  installations  throughout  the  coast  of  central  and  eastern  Crete  that  were
constructed and used during the Classical, Hellenistic, Roman, Byzantine and Venetian
periods. According to historical sources, an rsl rise of 0.70 m can be attributed to the
paroxysmal event of AD 1604. The rsl rise by 0.55 m occurred at some time during the
next  320  years  and  definitely  before  the  early  20th  c.  (Mourtzas, 2012a,  b;
Mourtzas et al., 2016; Mourtzas and Kolaiti, 2017b, c).

41

The palaeogeographic reconstruction of ancient Lasaia and Traphos Island is deduced
from  the  rsl  changes  and  their  impact  on  the  coastal  morphology  and  the  sea-land
interaction over time, as detailed in section 3 above.

42

Palaeogeographic  evidence  of  the  earlier  phase  of  the  seafront  of  ancient  Lasaia  is
provided by the sea level at 4.15 ± 0.30 m bmsl, which is dated to the period between
1900  BC  and  1600  BC.  During  this  sea  level,  the  earliest  beachrock  generation  (II)
formed, today observed west of  the inner breakwater at  3.80 m to 4.30 m bmsl.  The
extent of the beachrock combined with the bathymetry of the seafloor suggests that the
shore was 80 m wider than at present and the island was attached to the mainland by a
strip of land consisting of beach materials,  with a  maximum elevation of  2  m and an
average width of 150 m (Fig. 11a). Α protective rockfill was placed at the eastern side of
the strip. The beachrock (II) was cemented on the western side of the strip (Figs.  10a,
b, 11b).  At the same time, the top of the rockfill at the SW edge of Traphos stuck out
1.70 m from the then sea level (Fig. 11a, b).
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The sea level was at 4.15 ± 0.30 m below mean sea level (bmsl). The coastal morphology before (a) and after
(b) the formation of the earliest beachrock generation (II)

Credit: Authors

6.1.2 Neopalatial period (ca. 1600 - ca. 1450 BC) to the end of
the Postpalatial period (ca. 1200 BC)

Fig. 12 - Palaeogeographic reconstruction of the seafront of ancient Lasaia between
1620 BC and 1200 BC

The sea level was at 2.50 ± 0.20 m bmsl. The coastal morphology before (a) and after (b) the formation of the
intermediate beachrock generation (III)

Credit: Authors

The abrupt rsl rise by 1.65 m around 1600 BC shifted the sea level to 2.50 ± 0.20 m
bmsl and is associated with the wider neotectonic upheavals in the area of the southern
Aegean  that  accompanied  the  strong  eruption  of  the  Thera  volcano.  As  a  result,  the
coastline receded for 15 m, the earlier beachrock generation (II) submerged, the average
width of  the  strip  of  land reduced to  100 m and,  probably,  its  southern  end slightly
submerged, thus separating the island from the mainland (Fig. 12a).

44

The sandy pebble deposits in the central part of the strip were cemented forming the
intermediate beachrock generation (III) (Figs. 10c, d, e, 12b). The top of the rockfill at the
SW edge of Traphos still protruded 0.40 m above the then sea level, which remained at
2.50 ± 0.20 m bmsl until 1200 BC (Mourtzas et al., 2016; Mourtzas and Kolaiti, 2017b).
The subsequent rsl rise of 1.30 m most likely occurred at the end of the Late Bronze Age.
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6.2 - Hellenistic and Roman periods

Fig. 13 - Palaeogeographic reconstruction of the seafront of ancient Lasaia between 1200
BC and 1604 AD

The sea level was at 1.20 ± 0.10 m bmsl. The coastal morphology before (a, b) and after (c) the formation of the
intermediate beachrock generation (IV)

Credit: Authors

6.3 - Venetian and Ottoman periods

Then, a great number of sites in the Aegean and the Eastern Mediterranean were partly or
totally  destroyed  over  a  50-year  period  as  a  result  of  seismic  events  (e.g.  Nur  and
Cline, 2000; Nur and Burgess, 2008; Jusseret et al., 2013; Mourtzas and Kolaiti, 2020) or
a combination of human and natural events, such as internal rebelions, climate change,
drought and mainly earthquake storm, which caused systems collapse and brought the
Late Bronze Age to an end (Cline, 2014).

Although  the  archaeological  survey  does  not  so  far  provide  sufficient  evidence  to
support the existence of a Minoan settlement during the Middle and Late Bronze Age in
Lasaia, the manmade rockfill at the SW edge of Traphos, which stuck out from the then
sea for a length of 130 m, thus shaping a safe anchorage, combined with the exploitation
of  the  copper  minerals  and the  Minoan  burial  remains  on  the headland,  allow us  to
hypothesise another prehistoric harbour on the southern coast of Crete.

46

At the end of 4th c. BC to mid-3rd c. BC, the harbour-town of Lasaia was established on
the coast opposite Traphos, while the sea level was at 1.20 ± 0.10 m bmsl. At that time,
the shore was 35 m wide, the sandy spit extended 85 m into the sea and its southern end
was  35  m away from the  rocky coast  of  Traphos Island.  The  intermediate  beachrock
generation (III) was overlaid by coastal deposits and the top of the outer breakwater had
submerged at 1 m bmsl, no longer providing protection from the south winds (Fig. 13a).

47

The  rockfill  of  the  inner  breakwater  was  then  constructed,  leaving  a  wide  channel
between the end of it and the island to allow the safe passage of vessels, depending on the
wind (Fig. 13b). However, the harbour, being exposed to SW winds, was not safe. Since
the eastern basin  was perilous for boats due to  the rocky reefs,  vessels  would mostly
approach the western harbour basin. It provided protection against the NE winds. When
the wind was blowing from the SW, vessels would cross the channel towards the eastern
harbour basin taking great care to avoid the shallow rocks. Despite the inherent dangers,
the harbour of Lasaia was the safest anchorage on the extremely exposed southeastern
coast of Crete.

48

During this sea level, the coastal deposits on both sides of the inner breakwater were
cemented and formed the younger beachrock generation (IV), which also intergrated the
boulders of the rockfill (Figs. 10f, g, h, 13c).

49

According to historical evidence, the next change in sea level occurred between 1440
and  1865,  most  likely  during  the  strong  earthquake  of  1604.  The  sea  level  rose  to
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Fig. 14 - Palaeogeographic reconstruction of the seafront of ancient Lasaia after 1604 AD

The sea level was at 0.55 ± 0.05 m bmsl

Credit: Authors

Conclusions

0.55 ± 0.05 m bmsl, the shoreline further receded, the beachrock generation (IV) and the
inner  breakwater  submerged  at  0.50  m  to  0.80  m  bmsl  (Fig.  10i),  with  the  island
becoming completely isolated from the mainland (Fig. 14). The settlement on Traphos,
which provided shelter  to natives from the persecution of the Ottoman conquerors,  is
attributed to this period (Blackman and Branigan, 1975, p. 34, 35).

The relatively protected coastal morphology of ancient Lasaia on the inhospitable – to
shipping – southeastern coast of Crete, seems to have provided shelter for ships since the
end of the  Early  Bronze  Age,  prior  to their  sailing around Cape Lithino and heading
towards the harbour-town of Kommos (Messara Gulf).

51

The  coastal  morphology  of  the  headland  facing  the  rocky  island  of  Traphos  has
systematically  changed  following  the  significant  changes  in  sea  level  over  the  last
4000 years: from a tied island connected to the mainland by a strip of land when the sea
level was at 4.15 ± 0.30 m and 2.50 ± 0.20 m bmsl, to a low promontory protruding into
the  sea  at  a  short  distance  from  the  coast  of  Traphos  when  the  sea  level  was  at
1.20 ± 0.10 m bmsl, and finally to a narrow shore opposite the island when the sea level
was at 0.55 ± 0.05 m bmsl.
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Since the Bronze Age, the diversity of the infrastructures reflects both the technological
progress and the human needs over time. Technical measures to ensure access, mooring
and anchoring of vessels seem to have been adapted to sea level changes. A rockfill that
was  dumped at  the  SW edge of  Traphos Island was the  outer  breakwater during  the
Minoan palatial period. It protected the harbour basin from the SW winds, while the strip
of land was a shield against the NE winds. It is the first Minoan harbour to be reported on
the southeastern coast of Crete, thus providing new evidence on the Minoan maritime
constructions as well as the ancient seafaring and sea routes in the Aegean.
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The inner breakwater was constructed during the Hellenistic-Roman periods, when the
outer breakwater had been submerged and the western harbour basin was no longer safe
due  to  its  exposure  to  the  SW  winds.  The  channel  between  the  end  of  the  inner
breakwater and the island allowed mariners to pass from the western to the eastern basin,
depending on the weather.
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installations and the coastal morphology were submerged, isolating the island from the
mainland.  Traphos  provided  shelter  for  the  Cretan  refugees  from  the  Ottoman
conquerors.
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Title Fig. 3 - Ancient Lasaia

Caption Plan of the seafront as it now stands
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Title Fig. 4 - Ancient Lasaia and the island of Traphos

Caption Lithographic print depicting the bay of Kaloi Limenes
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Fig. 5 - Detailed mapping of the submerged geomorphological and
archaeological sea level indicators with depths below mean sea level
(bmsl) in metres
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Title

Fig. 6 - Comparison between the 14C dated marine notches of the
westernmost part of Crete, which formed during ten subsidence tectonic
events and then uplifted during the tectonic event of
1550 ± 80 ÷ 1595 ± 70 BP (AD 365 earthquake), and the submerged
marine notches and beachrocks of the eastern part of Crete, dated using
archaeological sea level indicators

Caption

The mean depths (bmsl) and dating of the four marine notches and the
corresponding beachrock generations of central and eastern Crete are
shown on the right half plot. The elevations (amsl) and dating of the uplifted
marine tidal notches of western Crete are shown on the upper left plot. The
lower left plot indicates the depths (bmsl) of the marine notches of western
Crete when the sea level on the entire island was at 1.25 ± 0.05 m bmsl.
The yellow arrows indicate the subsidence of the entire island between
4200 ± 90 BP and 1595 ± 70 BP. The green arrow indicates the co-seismic
uplift of the western part during the AD 365 earthquake. The red arrows
indicate the subsidence of the entire island during the AD 1604. During the
AD 365 earthquake, the western part of Crete separated from the eastern
part along the neotectonic graben of Spili and uplifted by 9 m (after
Mourtzas et al., 2016). Shown on the map of Crete (top left) are the
locations of the archaeological sea level indicators and the separation of
western and eastern part of Crete along the Spili fault zone (modified from
Mourtzas and Kolaiti, 2020). BP: for radiocarbon dating, yr bp: years before
present (indirect dating).
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Title
Fig. 7 - Relative sea level curves for western and central and eastern Crete
during the Late Holocene
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Caption

As deduced from beachrock data (blue line) and marine notches data
(magenta line). The orange line indicates the subsidence on the NW tip of
Crete before the AD 365 uplift, when the marine notch of 1550 ± 80 BP
was at 1.25 ± 0.05 m bmsl (after Mourtzas, 2012a, b; Mourtzas et al.,
2016). Error bars indicate time and depth uncertainties. Historical periods
and major catastrophic events are also reported. BP: for radiocarbon
dating, yr bp: years before present (indirect dating).
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Title Fig. 8

Caption

(a) Aerial view of ancient Lasaia and the island of Traphos from the SW. (b,
c) Views of the Hellenistic-Roman inner breakwater and Traphos from the
North. (d, e, f) Underwater views of the Minoan outer breakwater at the SW
edge of Traphos island. (g) Underwater view of the submerged Hellenistic
inner breakwater. (h) The two submerged tidal notches on the underwater
portion of the fault plane on Traphos. (i, j) The tidal notch at 1 m to 1.20 m
bmsl on the boulders of the inner breakwater. (k) The submerged younger
beachrock generation (IV). (l) The intermediate coarse beachrock (III) that
underlies beachrock (IV), west of the inner breakwater.

Credits
Source: Photo a: https://www.tripinview.com/en, photos b, c, d, e, f, g, h, I,
j, k, l: Nikos Mourtzas
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Title Fig. 9 - Satellite image of the seafront of ancient Lasaia

Credits
Source : Map data: Image © 2020 Google Earth Pro, European Space
Imaging, date of image: 22.07.2015, accessed 15.5.2018
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Title Fig. 10

Caption

(a) Cross-section of the relatively protected, microtidal, western coast of
the strip of land consisting of sand and pebbles. (b) When the sea level
was at 4.15 ± 0.30 m bmsl, the beachrock generation (II) was cemented in
the intertidal and supratidal zones. (c) A rsl rise of 1.65 m sunk the earliest
beachrock generation (II). (d) In the intertidal and supratidal zones of the
new sea level at 2.50 ± 0.20 m bmsl, the new beachrock generation (III)
was formed. (e) As a result of the constant supply of sediments, a large
part of beachrock slab (III) was covered by a layer of sand and pebbles.
(f) The sea level rose by 1.30 m and, at the new sea level stand, the
Hellenistic inner breakwater was constructed. (g, h) In the intertidal and
supratidal zones of the new sea level stand at 1.20 ± 0.10 m bmsl,
beachrock (IV) was cemented over beachrock (III), incorporating the
boulders of the Hellenistic inner breakwater. The tidal notch at 1.20 m bmsl
was incised on the fault plane of Traphos and on the boulders of the inner
breakwater. (i) The sea level rose by 0.70 m at 0.55 ± 0.05 m bmsl forming
the tidal notch of 0.60 m bmsl on the fault plane of Traphos. (j) After the
recent rsl rise by 0.55 m, the sea level shifted to its current stand. The tidal
notches and the three beachrock generations submerged below the sea
level. The earliest beachrock (II) was eroded and broken into large pieces
over time. The depths of the base of the tidal notches and the seaward
base of the beachrock generations correspond - with minor deviations - to
the mean sea levels of 4.15 ± 0.30 m, 2.50 ± 0.20 m, 1.20 ± 0.10 m and
0.55 ± 0.05 m bmsl, during which they were formed.
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Title
Fig. 11 - Palaeogeographic reconstruction of the seafront of ancient Lasaia
between 1900 BC and 1620 BC
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Caption
The sea level was at 4.15 ± 0.30 m below mean sea level (bmsl). The
coastal morphology before (a) and after (b) the formation of the earliest
beachrock generation (II)

Credits Credit: Authors
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Title
Fig. 12 - Palaeogeographic reconstruction of the seafront of ancient Lasaia
between 1620 BC and 1200 BC

Caption
The sea level was at 2.50 ± 0.20 m bmsl. The coastal morphology before
(a) and after (b) the formation of the intermediate beachrock generation (III)

Credits Credit: Authors
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Title
Fig. 13 - Palaeogeographic reconstruction of the seafront of ancient Lasaia
between 1200 BC and 1604 AD

Caption
The sea level was at 1.20 ± 0.10 m bmsl. The coastal morphology before
(a, b) and after (c) the formation of the intermediate beachrock generation
(IV)

Credits Credit: Authors
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Title
Fig. 14 - Palaeogeographic reconstruction of the seafront of ancient Lasaia
after 1604 AD

Caption The sea level was at 0.55 ± 0.05 m bmsl

Credits Credit: Authors
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