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Determination of extremewave heights using a Peaks-Over-Threshold (POT) approach is revisited. Firstly, the
GPD-Poisson model is recalled. A double threshold is presented and justified, with objective tools for
determining the high threshold. This model is then extended to other statistical distributions, namely the
Weibull and Gamma distributions. Objective criteria (BIC and AIC) based upon likelihood are used to select
the best-fitting distribution. This method is tested on two locations: the historical IAHR Haltenbanken dataset
and a location at the entry of the Strait of Gibraltar. Finally, sensitivity analyses are carried out with respect to
the high threshold and to the duration of the dataset to estimate the robustness of the approach presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Statistical methods to determine extreme wave heights using the
Peaks-Over-Threshold approach (POT) have been significantly im-
proved for several years. The IAHR Working Group on Extreme Wave
Analysis issued recommendations about the most appropriate way to
proceed when determining extreme wave heights (Mathiesen et al.,
1994). They recommended the use of the POT method along with a
Weibull distribution estimated by maximum likelihood. A little later,
several authors introduced the GPD-Poisson model (e.g. Coles, 2001),
which is themost naturalway toproceedwhenusing the POTapproach.
While respecting the general guidelines of the IAHR Maritime
Hydraulics-Working Group on Extreme Wave Analysis (Mathiesen et
al., 1994), this model notably improves several key steps of the analysis,
particularly by fitting a Generalized Pareto Distribution (GPD) to storm
peaks while assuming that the number of storms in one year follows a
Poisson distribution. It is now recommended (Hawkes et al., 2008) and
widely used (e.g. Méndez et al., 2006; Thompson et al., 2009), although
many authors still prefer other distributions, mainly the classical
extreme distributions: GEV, Weibull, and Gumbel.

However, it should be recalled that the GPD-Poisson model is an
asymptotic model. For this reason, other distributionsmight give better
results.

We therefore propose to extend this model to a multi-distribution
approach, using theWeibull and Gammadistributions in addition to the

GPD. Objective criteria for choosing themost appropriate threshold and
determining the best-fitting distribution are also presented.

This method is illustrated by case studies in the Northern Atlantic
and in the Strait of Gibraltar.

2. POT method revisited

2.1. Brief justification of the GPD-Poisson model

Let us consider a sample of wave height data (X1,…, Xn). These
data follow an unknown continuous distribution, say F. Let u be a
threshold and y=x|xNu−u the exceedance by x of the threshold u. So
Y=(Y1,…, YN) is the sample of the N threshold exceedances. The law
of threshold exceedance is given by:

P Yby½ � = P Xbu + y jX N u½ � = F u + yð Þ−F uð Þ
1−F uð Þ ð1Þ

According to Pickands, 1975 (see also Embrechts et al., 1997),
when u is large, this law is very nearly in the form of the Generalized
Pareto Distribution defined as:

GY;k;σ yð Þ = 1− 1 + k
y
σ

� �−
1
k if k≠0

GY;σ yð Þ = 1−exp − y
σ

� �
if k = 0

8>><
>>:

ð2Þ

where k is the shape parameter and σ is a scale parameter.When kN0,
the distribution has a heavy and unbounded tail and belongs to the
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Fréchet domain of attraction (a heavy tail is not exponentially
bounded, and extreme values are more likely to occur than in
distributions with exponential or lighter tails). When kb0, the
distribution is bounded by xmax=u+σ/k and belongs to the Weibull
domain of attraction. Finally, when this parameter is zero, the GPD is
the exponential distribution with scale parameter σ.

Still, it must be kept in mind that the GPD is an asymptotic law.
This means we must be in its range of validity, i.e. u must be high
enough. However, the higher the threshold, the greater the uncer-
tainties because of the very small number of data left. It is the well
known dilemma between bias and variance.

If we consider that the number of events (i.e. storms) in one year
follows a Poisson distribution with parameter λ, we obtain the so-
called GPD-Poisson model: the law of the exceedances is a
Generalized Pareto Distribution and the storm occurrence is a Poisson
process.

A Poisson distribution should thus be fitted to the data. However,
the most common estimator for its unique parameter (e.g. the
maximum likelihood estimator) is the empirical mean. We are thus
able to link the number of storm occurrences with the return period T.

2.2. The multi-distribution POT model

2.2.1. Data homogenization
The first step in the analysis is to extract homogenous time series

from the main continuous sea states time series (buoy measurement,
hindcast data, etc.). If this step is omitted, storms from very different
meteorological phenomena will be treated together, although it is
most likely they are not identically distributed. Such homogenization
can be carried out by separation in carefully chosen directional
sectors, seasonal analysis (e.g. summer/winter monsoon) and
separation of sea states into independent wave systems. Rare but
very strong events such as hurricanes should also be checked if
necessary. Actually, homogenization may be the most important step
in the analysis (this point was stressed by Mathiesen et al., 1994),
although it is often the least considered: the best statistical analysis
cannot extract the “truth” out of wrongly prepared data (“Garbage In,
Garbage Out”).

2.2.2. Peak selection and double threshold
Once we have time series of homogenous sea states, we have to

extract storm peaks. If we keep in mind that a rigorous statistical
analysis requires independent and identically distributed (i.i.d.) data,
we will pay special attention to obtaining independent storm peaks.
Firstly, we should be careful concerning possible fluctuations in
storms around the threshold. If the wave height falls below the
threshold for a short period, say 3 h in a 24-hour storm, we should not
cut the storm in two. Secondly, we should set a minimum period
between two storms to ensure their peaks are independent. Finally,
once the storm peaks are identified, outliers (i.e. values significantly
larger than the other ones) must be checked carefully in order to be
sure they really belong to the population and are not the result of
some measurement error. If so, they could have a return period T
much larger than the duration of the time series K. Thus they provide
valuable information andwe recommend keeping them in the sample.

The interest of a threshold is to consider that storm peaks above it
have a statistically extreme behavior, i.e. they follow the same
extreme distribution. However, we do not know the threshold value a
priori. A simple way to proceed is therefore to use a double threshold
(u1,u2 ). A low value u1 is set to select both weak and strong storms.
There is no need for precise criteria in the choice of u1 because the
procedure relies more heavily on u2 (see below). Its aim is only to
extract the storm peaks from the time series, reducing the sample size
from 10,000 to 100,000 values to a few hundreds of peaks. u1 shall be
high enough to discriminate two consecutive storms and low enough

to be below the “extreme area”, i.e. the strong storms showing
genuine statistically extreme behavior.

We obtain NT peaks over a period of K years. Hence, the mean
number of storms per year above u1 is:

λT =
NT

K
ð3Þ

Our experience in extra-tropical areas led us to set u1 so as to have
λT approximately between 5 and 10, although it is not an absolute
constraint.

We have now to determine the high threshold u2 above which
storms have a statistically extreme behavior. As the GPD is the
asymptotic law, it seems quite reasonable to use its properties to
determine u2. In particular, if a sample follows a GPD, the shape
parameter k and the modified scale parameter σ⁎=σ−ku2 remain
constant when u2 increases. So if we fit a GPD to the exceedances of a
threshold varying between u1 and, for instance, a threshold
corresponding to one storm per year, we can draw graphs of shape
and modified scale parameters with respect to u2 and search for
“domains of stability”where they will remain roughly constant. As we
want to be in the asymptotic domain, we are interested in the highest
domain of stability. And as we want to have as much information as
possible, we will choose the lowest threshold of this highest domain.

Thus we select N storm peaks over K years, namely λ=N/K storms
per year (as we have seen, this empirical mean is also the estimator of
the Poisson parameter). After many tests, we believe it is appropriate
for λ to stand approximately between 2 and 5. If K is low, a value
around 5 is more advisable in order to ensure that N is large enough
(with a minimum of 20–30). In contrast, if K is quite large (around
40–50), a value of around 2 is more appropriate.

2.2.3. Fit to multiple distributions
Stormpeaks aboveu2 are now to be fitted to a statistical distribution.

As we have seen, the GPD is the asymptotic law, and thus a natural
candidate. However, we do not know whether we are within the
asymptotic domain. Thus, other distributions might fit the data better.
We can try many of them and then determine the best-fitting one.

When looking for suitable distributions, it is useful to know their
domain of attraction for maxima (Castillo and Sarabia, 1992). If they
belong to the Fréchet domain (e.g. Pareto or beta laws), their tails are
heavy and unbounded, which means they give too much weight to
extreme events. Practice shows they are not appropriate for coastal
engineering applications where the wave heights are physically
bounded. If they belong to the Gumbel domain, their tails decrease
exponentially. If they belong to the Weibull domain (e.g. GPD with
negative shape parameter), their tails are bounded. We can thus limit
our study to distributions belonging to Weibull or Gumbel domains of
attraction for maxima.

Our tests have shown that along with the GPD, the Gamma
distribution and 2-parameter Weibull distribution for minima often
behave quite well. Although other distributions may be studied, we
will work here with these two laws, whose cumulative distribution
functions are respectively:

Gamma : FY;k;σ yð Þ = P Y≤yf g =
γ k; yσ
� �
Γ kð Þ ð4Þ

Weibull : FY;k;σ yð Þ = P Y≤yf g = 1−exp − y
σ

� �k
� �

ð5Þ

As for the GPD, we work with y, that is the threshold exceedance
x−u2, provided xNu2. k and σ are respectively the shape and the
scale parameters. Γ is the Gamma function, and γ is the lower
incomplete gamma function.
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The choice of the estimator is also quite important. Mathiesen et al.
(1994) mention three estimators: least squares methods, the method
of moments and the Maximum Likelihood Estimator (MLE). The
statistical theory says that an estimator must be robust, i.e. it is not
disturbed by an outlier and it must be consistent, i.e. the bias and the
variance tend to zero when the sample size increases. Least squares
methods, though easy to implement, are neither robust nor
consistent. In particular, they are found to be sensitive to outliers
(Mathiesen et al., 1994). They are therefore rejected. It is nevertheless
noteworthy that Goda (2000) recommends this method with
modified plotting position formulae. The method of moments may
be used as first approximations but the small sample sizes hinder it. In
particular, the method of moments gives too much bias for the typical
sample sizes we are handling (Goda, 2000). To handle this difficulty,
Hosking and Wallis (1987) have proposed an estimator based upon
the Probability Weighted Moments. But it is known to be less efficient
than the MLE. Finally, the most handy and appropriate method is to
use the Maximum Likelihood Estimator (MLE). This estimator
maximizes the likelihood function of the fit, which is defined by:

L X1;…; XN jθð Þ = ΠN
i = 1fθ Xi; θð Þ ð6Þ

where fθ is the joint density function (with parameter vector θ) at the
sample observations Xi. The log-likelihood function is usually used,
since it is much easier to derive:

l X1;…; XN jθð Þ = ΣN
i = 1ln fθ Xi; θð Þð Þ ð7Þ

Thus we have an optimization problem, as the likelihood function
has as many variables as the distribution has parameters. In some
cases, optimization algorithms may fail to maximize the likelihood.

However, the use of the MLE for two-parameter distributions such
as the Weibull and Gamma distributions has a very disturbing
drawback. These distributions are very sensitive to the distance
between u2 and the first peak. In other words, the estimated
parameters will be quite different if the smallest value of the ordered
sample of the threshold exceedances Y1 is 0.1, 0.01 or 0.001. When we
look at the 100-year wave height, the result varies between 14 and
16 m! The GPD is much less sensitive to this phenomenon. We think
the explanation could be related to the shape of the density functions
just above 0. A comparison with the method of moments estimator
was carried out. From these tests, it appeared that the two-parameter
distributions could be used withMLE, but only when u2 meets a storm
peak. As this peak is excluded, the first value of the exceedance sample
is as far from u2 as possible.

A solutionwould be to use the three-parameterWeibull andGamma
distributions (the latter being known as Pearson-III distribution) by
adding a location parameter μ (μbY1, thefirst and smallest exceedance):

Pearson� III ð3� parameter GammaÞ: FY;k;σ yð Þ = P Y≤yf g =
γ k; y−μ

σ

� �
Γ kð Þ

ð8Þ

Weibull : FY;k;σ;μ yð Þ = P Y≤yf g = 1−exp − y−μ
σ

� �k
� �

ð9Þ

However, ML estimation of such distributions is very difficult, and
the algorithms usually fit two-parameter distributions inside a
discrete range of location parameters (Panchang and Gupta, 1989).
Actually, it appears that quite often the maximum likelihood with
respect to this location parameter μ is obtained for μ→Y1 (with μbY1).
Now, the Maximum Likelihood Estimator is known to provide poor
results when the maximum is at the limit of the interval of validity of
one of the parameters. In our applications, this is a major drawback of
this estimator. We are currently carrying out further investigation on
this subject and shall soon submit our results.

2.2.4. Best fit selection
Once several distributions are fitted to the data, we have to

determine the best fit. For this purpose, we use objective Bayesian
criteria. The first one is the Bayesian Information Criterion (BIC), also
known as the Schwarz Criterion (Schwarz, 1978). It minimizes the
bias between the fitted model and the unknown “true” model.
Assuming asymptotic conditions (N large enough), BIC is given by:

BIC = −2InL + kpInN ð10Þ

where L is the likelihood of the fit, N is the sample size (number of
storm peaks above u2) and kp is the number of parameters of the
distribution.

We can also use the closely related Akaike Information Criterion
(AIC), which gives themodel providing the best compromise between
bias and variance (Akaike, 1973). It can be interpreted as the sum of
two terms, the first one measuring bias and the second onemeasuring
variance. Under the same assumptions as BIC, AIC is given by:

AIC = −2InL + 2kp ð11Þ

For BIC as for AIC, the lower the criterion, the better the fit, so we
will select the distribution providing the lowest criteria. Most of the
time, both criteria give the same result. If they do not, we recommend
keeping the distribution giving the most conservative return values.

2.2.5. Return values and confidence intervals
We now have only one distribution left, with MLE estimated

parameters. We are interested in wave heights of return period T. It is
actually a quantile of the estimated distribution, whose non-
exceedance probability is 1−1/λT. These quantiles for GPD, Gamma
and Weibull distributions are given by:

GPD : HsT = u2 +
σ̂

k̂
λTð Þk̂−1

� �
ð12Þ

Gamma : HsT = u2 + Γ−1
kˆ ;σ̂ 1− 1

λT

� 	
ð13Þ

Weibull : HsT = u2 + σ̂ ln λTð Þ½ � 1k̂ ð14Þ

Finally, confidence intervals are to be computed. Many authors
(Coles, 2001) use the classical asymptotic method. Mathiesen et al.
(1994) advocate the use of Monte-Carlo simulation techniques. A
robust way is to use parametric bootstrap methods (Thompson et al.,
2009). The principle is quite simple (see for instance Efron and
Tibshirani, 1993a,b). From the estimated distribution with estimated
parameter vector θ̂0, a random sample of size N is generated and the
same distribution is then fitted to this sample, leading to a slightly
different estimated parameter vector θ̂1, which will give a slightly
different quantile HsT, 1. After 100,000 iterations, a sample of 100,000
HsT, i is obtained. The 90% confidence interval will be given by the
percentiles [HsT, 5% ;HsT, 95%]. It is advisable to correct the bias of the
bootstrap. Bias is given by the difference between the empirical mean
ofHsT, i andHsT, 0, and it simply has to be removed from the percentiles
previously obtained.

3. Case studies

3.1. Datasets

We shall study two different locations. The first one is the historical
Haltenbanken dataset, provided by the IAHR Working Group on
Extreme Wave Analysis (van Vledder et al., 1994). The Haltenbanken
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buoy is located off the coast of Norway. Its coordinates are 65°5′N; 7°34′
E (Fig. 1a). The original dataset consists of 128 buoy-measured storm
peaks above 7 m for a period of 9 years, so no pre-treatment on this

samplewas done and the peakswere considered to be independent and
identically distributed. The shortness of the periodmust be stressed and
will be discussed later.

Fig. 1. a) Location of the Haltenbanken dataset. b) Location of the Gibraltar dataset.
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Fig. 2. Haltenbanken dataset: stability of shape and modified scale parameters for Generalized Pareto Distribution.
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The second dataset comes from the SIMAR-44 hindcast database
provided by Puertos del Estado. We chose point 1056044, whose
coordinates are 36°N; 6°W (Fig. 1b). It is located at the western entry
of the Strait of Gibraltar. Wave and wind data are provided every 3 h
from 1958 to 2001 for a total of 44 years. In contrast to Haltenbanken,
the storm peaks have to be extracted here. As has been said above, the
first and most important step is to homogenize the sample. A simple
method, directional analysis, will be used. We will only consider the
western sector, facing the Atlantic. From the model point, we can
draw lines to Cape St-Vincent, Portugal north-westwards and towards
the Moroccan coast near El-Jadida. Thus we obtain the following
sector: [220°; 295°]. It is not a very wide sector, but unsurprisingly it is
the dominant one, as 86% of the hindcasted waves come from this
sector. We consider that all these waves are homogenous and, in
particular, that all these western storms are generated by the same
kind of Atlantic depressions and thus are identically distributed.

If we set a low threshold u1 equal to 3 m, we select NT=288 storm
peaks. As K=44 years, we then have a mean number of total storms
per year λT=6.55, which seems quite reasonable.

3.2. Selection of high thresholds

We will now try to determine the best high threshold. For this
purpose, as has been explained in Section 2.2.2, we will adjust a GPD
to the data over a wide range of thresholds and look at the stability of
the shape parameter k and of themodified scale parameter σ* (Fig. 2).
As has been previously discussed, the thresholds tested are those
meeting the dataset values. We use tools available in the “ismev”
package (Coles and Stephenson, 2006) developed for the R language
(R Development Core Team, 2009). We modified these tools in order
to take into account the remarks made previously. On the secondary
axis, we draw the change in λ, so as to see easily the thresholds

corresponding to a value of λ between 2 (u2=9.94) and 5 (u2=8.63).
These limit thresholds are written in italics.

We can see two domains of stability where the parameters remain
approximately constant. The lowest threshold of the highest domain,
just below the value of 8.63, is 8.57 m. For this threshold, λ is 5.11,
which is slightly higher than 5, but as K is very low (9 years), we can
allow this small exceedance in order to have N large enough (46).

For Gibraltar, the choice is more difficult (see Fig. 3). The curves are
rather flat when u2 is higher than 3.5. (corresponding to λ=5) This
value could therefore be adopted. However, it is important to bear in
mind that here K is large (44 years). A value closer to λ=2
(corresponding to u2=4.5 m) may therefore be more appropriate.
Since there is small bump for 4.5 m, we will choose u2=4.3 m. It is
clear that choosing the right threshold is not always a straightforward
matter. Thompson et al. (2009) presented methods for automated
threshold selection, but these should be used rather when working
with too many datasets for visual examination.

Table 1 recapitulates the characteristics of the samples.

3.3. Fit

For both datasets, the three distributions (GPD, Weibull, Gamma)
are now fitted to the exceedances of the high threshold with the
Maximum Likelihood Estimator. Table 2 provides BIC and AIC criteria
for the two locations and the three distributions.

We can see that both criteria give the same result. For
Haltenbanken, GPD is clearly selected, with Weibull then Gamma
quite far off. In contrast, for Gibraltar, GPD gives poor results with
respect to these criteria. The Gamma distribution is selected since it
minimizes both BIC and AIC criteria.

Actually, as we use distributions with the same number of
parameters (two), we could consider only the (log-)likelihood of
the fit: this would give the same results as BIC and AIC. However, it is
convenient to have a means of discriminating between fits for
distributions with one, two or three parameters together.
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Fig. 3. Gibraltar dataset: stability of shape (above) and modified scale (below) parameters for Generalized Pareto Distribution.

Table 1
Characteristics of the samples.

Haltenbanken Gibraltar

K (years) 9 44
u1 (m) 7 3
NT (−) 128 288
λT (yr−1) 14.22 6.55
u2 (m) 8.57 4.3
N (−) 46 104
λ (yr−1) 5.11 2.37

Table 2
BIC and AIC criteria for the fits of the three distributions for both datasets.

GPD Weibull Gamma

Haltenbanken BIC 120.0 122.0 122.4
AIC 116.3 118.3 118.8

Gibraltar BIC 216.6 212.4 211.4
AIC 211.3 207.1 206.1
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3.4. Return values and confidence intervals

The last step of the analysis is now to compute the return values for
the return periods of interest using the quantile functions defined
above for the best-fitting distribution. 90% confidence intervals are
also computed using a parametric bootstrap approach with 100,000

iterations (bootstrap bias is corrected). Table 3 gives the results for 1,
2, 5, 10, 20, 50 and 100 years.

It can be seen that the Haltenbanken results are much lower than
those given in van Vledder et al. (1994), where Hs100 varies between
14.2 and 15.8 m. The methods used in this paper were quite different,
and nobody used a GPD at that time. The closest analysis was carried
out by member D, who applied a 3-parameter Weibull distribution to
the 46 storm peaks above 8.6 m. This member obtained a Hs100 of
14.7 m (12.6–16.9 90% CI). In our analysis, the 2-parameter Weibull
distribution also gives 14.7 m for Hs100 (13.1–16.6 90% CI) but is
rejected by the BIC/AIC criteria. It is also noteworthy that bootstrap
confidence intervals for this GPD fit are much narrower than in the
case of the Working Group analysis (1.5 m versus 2.5 to 5 m).
Nonetheless, an explanation of such differences will be given later.

As for Gibraltar, the confidence intervals remain quite narrow; the
fit seems reasonable.

4. Sensitivity analysis with respect to the high threshold

4.1. Purpose of the analysis

We have proposed an objective method for determining the high
threshold. Nevertheless, the case of Gibraltar shows that a part of
subjectivity may remain when choosing it. It follows that studying the

Table 3
Return values for the best-fitting distribution with 90% confidence intervals.

Return period (years) Haltenbanken (GPD) Gibraltar (Gamma)

100 12.7
12.0–13.5

8.8
8.0–9.6

50 12.6
11.9–13.3

8.3
7.6–8.9

20 12.4
11.8–13.0

7.6
7.1–8.1

10 12.2
11.7–12.7

7.1
6.7–7.5

5 11.9
11.5–12.3

6.5
6.2–6.9

2 11.4
11.0–11.8

5.8
5.6–6.0

1 10.8
10.4–11.2

5.3
5.1–5.4
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change in return values and goodness of fit (i.e. in BIC/AIC criteria) can
provide interesting information for validating the results or, con-
versely, reconsidering the choice of threshold.

Let us draw similar plots to those showing the stability of the GPD
parameters, but this time with Hs100 and BIC/AIC criteria for each
distribution. As for the criteria, it is actually necessary to normalize
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Fig. 5. Gibraltar: a) stability of the 100-year significant wave height with respect to the high threshold. b) stability of the normalized AIC criterion with respect to the high threshold.

Fig. 6. Gibraltar: storm peaks above the low threshold u1 with respect to the calendar years. Choice of the 9-year period 1978–1986 (dashed line) and of the 17-year period 1974–1990
(dashed-dotted line).
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them in order to have clear graphs. Indeed, they will depend on the
sample size and so direct comparison between all the tested
thresholds is difficult. For each threshold, the criteria are computed
for the three distributions studied, and theminimum criterion is set at
100. The relative difference of the other criteria with respect to the
minimum are then added to 100.

5. Results

For the Haltenbanken dataset, we can see that from 8.57 m, that is
the high thresholdwe chose previously, the GPD quantile is extremely
stable, which is quite a remarkable result (Fig. 4a). The Weibull and
Gamma distributions are much more unstable and seem to tend
downwards towards the GPD value. The change in the normalized BIC
criterion (Fig. 4b) shows that the GPD is almost always the best-fitting
distribution in this case. Thus, the choice of u2 on the basis of the
stability of the GPD parameters appears to be particularly relevant
here. It is even probable that the asymptotic domain starts at 8.57 m,
thus giving further argument for choosing the GPD.

As in the case of the Gibraltar dataset, Fig. 5a shows that the three
distributions converge towards a common value of Hs100. Similarly to
Haltenbanken, the GPD quantiles are below those of the other
distributions. This pattern was observed in many tests: the GPD
value is clearly not conservative compared to other distributions. As a
matter of fact, the Weibull and Gamma distributions often behave
well when no saturation (i.e. no “flattening” of the highest peaks) is
observed in the data, whereas the GPD with a strongly negative shape
parameter generally fits well when saturation occurs. Here, the
(normalized) AIC criterion shows that the Gamma distribution is

always the best-fitting one (see Fig. 5b). Once again, the choice of
threshold appears to be relevant.

These stability plots for Hs100 and normalized criteria are a very
helpful way of checking the results obtained previously. If it seems
obvious that the return value is not at all representative, the choice of
threshold will have to be reconsidered.

6. Sample duration

6.1. Purpose of the analysis

We have studied two datasets, one very short compared to the
usual available duration (around 20 years) and the other quite long. It
is likely that the very short duration of the Haltenbanken dataset
(9 years) is the cause of the huge differences between the return
values given by the three statistical distributions.

The Gibraltar dataset provides an opportunity to test the
sensitivity of the return values with respect to the sample duration.
Fig. 6 shows thewesterly storm peaks above the low threshold u1 with
respect to the calendar years.

6.2. Link with the North Atlantic Oscillation

We also know that the Atlantic storm tracks are related to the
North Atlantic Oscillation (NAO), i.e. the oscillation of the atmospheric
pressure gradient between the Iceland low and the Azores high
around a long-term mean (Hurrell, 1995). Bacon and Carter (1993)
were among the first to suggest such a link. Recently, Dodet et al.
(2010) used a 57-year hindcast (1953–2009) to quantify this link.
They found correlation coefficients between the winter NAO index on
the one hand, and the 90% Hs percentile, the mean wave direction
winter-means and the peak period winter-means on the other hand.
As for Hs, the Pearson correlation coefficients are close to 1 off the
British Isles, close to zero off Galicia and become negative off the
Moroccan coast. The coefficient is around−0.3 at the western entry of
the Strait of Gibraltar. Taking account of the winter NAO index for this
location thus provides valuable information.

If we look at the change in the (PC-based) winter NAO index from
1950 to 2005 (see Fig. 7), we see that from 1950 to approximately
1980 (except for 1973 to 1975), the index is mostly negative, which
means the Atlantic storm tracks go preferentially southwards. After
1980, the index is mostly positive and storms sweep preferentially
over northern Europe.

Fig. 7. PC-based winter NAO index from 1950 to 2005.

Table 4
Gibraltar: fit characteristics and 100-year significant wave height with 90% confidence
intervals for the 9-year, 17-year and 44-year periods centered on 1982.

9 years
(1978–1986)

17 years
(1974–1990)

44 years
(1958–2001)

u2 (m) 3.1 3.3 4.3
N (−) 44 79 104
λ (yr−1) 4.89 4.65 2.37
Min BIC/AIC distribution Gamma Gamma Gamma
Hs100 GPD (m) 90% CI 9.3

7.3–12.0
9.1
7.4–11.2

8.3
7.6–9.2

Hs100 Weibull (m) 90% CI 10.0
8.1–12.3

9.4
8.1–11.0

8.5
7.8–9.3

Hs100 Gamma (m) 90% CI 10.5
8.6–12.6

9.6
8.4–11.0

8.8
8.0–9.6
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Méndez et al. (2006) use a non-stationary POT model to take into
account the NAO index by allowing the GPD parameters to be time-
dependent. However, it is not easy to determine the period of such an
index, and the more parameters the distribution has, the more
uncertainties there are in the final result. We thus kept on working
with a stationary POT model.

7. Results

As the highest peak is reached in 1982 (not far from the switch
between the negative and positive indices), this will be taken as a
pivotal year. We will therefore study a 9-year period (1978–1986)
and a 17-year (1974–1990) period, both centered on 1982, and the
results will be compared with the 44-year dataset. The results are
given in Table 4.

The main conclusion that may be drawn is that the return values
are lower when the duration of the dataset increases. The extreme
peak of 1982 (most probably very close to the 100-year wave height)
clearly plays a role in this phenomenon, as its weight is greatly
enhanced in the 9-year dataset compared to the 44-year one. The
confidence intervals are therefore much wider in the short duration
dataset. Another important fact is that the Gamma distribution is
considered the best-fitting distribution by both the BIC and AIC
criteria for the three datasets.

It is also noteworthy that the deviation between the 100-year
wave heights for the three distributions is only 11% in the case of the
9-year sample and no more than 5–6% in that of the 17-year and the
44-year datasets.

The interest of a long dataset is clear, as the deviation between the
best 100-year wave heights is around 9% between the 17-year and 44-
year datasets. This interest is all the greater when the presence of an
outlier is evident, as is the case here. A long period also allows cyclical
regional climatic patterns with long (decadal or multidecadal)
periods, such as the NAO, to be taken into account. However,
engineers usually work with datasets whose duration is rather 15 to
20 years. Special attention should therefore be paid to such climatic
patterns, as the dataset could cover periods with storm peaks that are
lower or higher than a long-term mean.

If we choose now to study a 9-year and a 17-year period with
weaker storms, the results are quite different. Let us carry out the
analysis for the periods 1993–2001 (9 years) and 1985–2001
(17 years), when the NAO index is mostly positive and the storms
rather weak (see Fig. 8). Results are given in Table 5.

BIC and AIC criteria now select the GPD for these two periods,
though it gives far lower return values than the Weibull and Gamma
distributions, whose return values remain by chance quite constant.
Surprisingly, the GPD confidence intervals are narrower for the 9-year
period whereas they are wider for the other two distributions.

Actually, it seems that when there is an outlier in a short-duration
dataset, the GPD is much less sensitive to it than the Gamma and
Weibull distributions. But when such a short duration corresponds to
a calmer than usual period, the GPD returns wave heights that are too
low, although it fits the data very well. This may well be the case for
the Haltenbanken dataset, where no outlier appears. In spite of the
likelihood-based criteria discrimination, a conservative choice for
Haltenbanken would be to choose another distribution, say the
Weibull one, with Hs100 around 15 m, which would be in accordance
with observations (see for instance Magnusson et al., 2006).

It is clear that 9 years is definitely too short a period for a robust
extreme wave heights analysis. When storms are thought to be stronger
than usual in this period (or if the dataset contains an outlier), the GPD-
Poisson model gives good results and seems quite stable. In contrast, if
storms are thought to be rather weaker than usual, the GPD-Poisson
modelmay produce return values that are too low, in spite of a very good
statistical fit. In such a case, it is imperative to extend the duration of the
dataset. If it is not possible, choosing the most conservative distribution
could be safer than relying on the BIC/AIC criteria for design purposes.

Two conclusions may be drawn from this analysis when working
with very short datasets (less than 10 years). Firstly, the interest of
extending the GPD-Poisson model to other statistical distributions is
manifest as we may obtain return values that are too low with this

Fig. 8. Gibraltar: storm peaks above the low threshold u1 with respect to the calendar years. Choice of the 9-year period 1993–2001 (dashed line) and of the 17-year period 1985–
2001 (dashed-dotted line).

Table 5
Gibraltar: fit characteristics and 100-year significant wave height with 90% confidence
intervals for the calmer 9-year, 17-year and 44-year periods.

9 years
(1993–2001)

17 years
(1985–2001)

44 years
(1958–2001)

u2 (m) 3.9 4.2 4.3
N (−) 32 43 104
λ (yr−1) 3.55 2.53 2.37
Min BIC/AIC distribution GPD GPD Gamma
Hs100 GPD (m) 90% CI 6.6

6.3–6.8
7.0
6.6–7.3

8.3
7.6–9.2

Hs100 Weibull (m) 90% CI 7.9
6.9–9.2

7.9
7.1–8.9

8.5
7.8–9.3

Hs100 Gamma (m) 90% CI 8.7
7.4–10.1

8.4
7.4–9.5

8.8
8.0–9.6

393F. Mazas, L. Hamm / Coastal Engineering 58 (2011) 385–394



Author's personal copy

model. Secondly, in this case criteria based upon likelihood fail since
the data are not fully representative of the local climate: engineers
have to keep in mind that the ultimate goal is to provide safe design
criteria and not the “purest” statistical fit.

To conclude with regard to the duration of the dataset, it may be
said that a limit to the ratio between T and K, i.e. the return period and
this duration, is necessary but not enough (this ratio is generally close
to 5). This analysis has shown that K must be large enough with
respect to the local climate in order to avoid covering only particularly
weak or strong periods. We believe twenty years is a minimum period
for a reasonably robust extreme wave analysis.

8. Conclusions

We carried out a complete review of a rigorous method for
determining extreme wave heights using the GPD-Poisson model, in
particular for choosing the high threshold. Although objective
methods exist, it is clear that the choice may still be difficult.
Parameters such as N and λ should be kept in mind when choosing u2.
Even so, several thresholds sometimes need to be tested.

It was also seen that although the GPD has the best theoretical
justification for being selected as the asymptotic law, other distributions
may give better results. Criteria for selecting the best-fitting distribution
are presented. They are based upon the fit likelihood. However, analysts
must always be very careful about the location of the high threshold
with respect to the first exceedances, as instabilities can occur for both
Gamma and Weibull distributions. We recommend using only high
thresholds equal to the data values, but a better understanding of this
purely mathematical phenomenon is necessary.

Sensitivity analyses for the return value and/or the criteria with
respect to high thresholds are very helpful for post-checking the
relevance of the choice made for u2. However, these graphs should
only be used as a verification tool, and not for decision-making.

This method was tested for two locations. As for the Haltenbanken
dataset, the GPD-Poisson model had the best behavior and led to
significantly lower 100-year wave heights than those calculated by
the IAHR Working Group in 1993 (van Vledder et al., 1994), probably
due to too short dataset duration. As for the Gibraltar location, the
Gamma distribution was considered the best in relation to both the
BIC and AIC criteria. Graphs illustrating the sensitivity analyses
reinforced these estimations.

The interest of working on long duration datasets was also
demonstrated. This interest is enhancedwhen the presence of outliers
is suspected or when decadal or multidecadal climatic patterns may
play a role. The multi-distribution approach appears to be necessary
for very short datasets, although the means for discriminating the
best-fitting distribution requires improvement. Indeed, we have
shown that the GPD-Poisson model can lead to dangerously low
return values when the analysis is carried out for a very short and
rather calm period. In this particular case, if the period cannot be
extended, BIC/AIC criteria may be put aside and the most conservative
results may be chosen. Consequently, a dataset covering at least
20 years is strongly recommended.

We have thus a robust enlargement of the stationary GPD-Poisson
model. It may be useful for engineers wishing to cover a wide range of
situations. The choice of distributions proposed here is not exclusive,
and others may be used. Engineers should remember that their aim is
to determine safe design criteria rather than perfect statistical fits, so
they must always be careful to ensure that the available data are fully
representative of the local climate.
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