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A fully nonlinear Boussinesq model for surface 
waves. Part 1. Highly nonlinear unsteady waves 

By G E  W E I 1 ,  JAMES T. K I R B Y ' ,  STEPHAN T. GRILL12 ,  
AND R A V I S H A N K A R  S U B R A M A N Y A 2  

'Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA 
2Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA 

(Received 21 July 1994 and in revised form 10 January 1995) 

Fully nonlinear extensions of Boussinesq equations are derived to simulate surface 
wave propagation in coastal regions. By using the velocity at a certain depth as a 
dependent variable (Nwogu 1993), the resulting equations have significantly improved 
linear dispersion properties in intermediate water depths when compared to standard 
Boussinesq approximations. Since no assumption of small nonlinearity is made, the 
equations can be applied to simulate strong wave interactions prior to wave breaking. 
A high-order numerical model based on the equations is developed and applied to the 
study of two canonical problems: solitary wave shoaling on slopes and undular bore 
propagation over a horizontal bed. Results of the Boussinesq model with and without 
strong nonlinearity are compared in detail to those of a boundary element solution of 
the fully nonlinear potential flow problem developed by Grilli et al. (1989). The fully 
nonlinear variant of the Boussinesq model is found to predict wave heights, phase 
speeds and particle kinematics more accurately than the standard approximation. 

1. Introduction 
Boussinesq-type equations, which include the lowest-order effects of nonlinearity 

and frequency dispersion as additions to the simplest non-dispersive linear long wave 
theory, provide a sound and increasingly well-tested basis for the simulation of wave 
propagation in coastal regions. The standard Boussinesq equations for variable water 
depth were first derived by Peregrine (1967), who used depth-averaged velocity as a 
dependent variable. Numerical models based on Peregrine's equations or equivalent 
formulations have been shown to give predictions which compare quite well with field 
data (Elgar & Guza 1985) and laboratory data (Goring 1978; Liu, Yoon & Kirby 
1985; Rygg 1988), when applied within their range of validity. 

Owing to the assumptions of weak dispersion and weak nonlinearity, the standard 
Boussinesq equations are restricted to shallow water areas and to small nonlinear 
effects. The first restriction results from the fact that the polynomial dispersion 
relation in standard Boussinesq equations mimics the exact linear solution (based 
on a hyperbolic tangent function) poorly in intermediate and deep water. Recently, 
extended forms of Boussinesq equations have been derived by Madsen, Murray & 
S~rensen (1991) and Nwogu (1993), among others. Madsen et al. achieved an 
improved linearized model by introducing expressions in the equations which are 
formally equivalent to zero within the accuracy of the model, thus obtaining a 
rearrangement of higher-order terms in the momentum equations. The form of the 
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added terms was governed by the constraint of obtaining the best possible linear 
dispersion relation. Nwogu (1993) used the velocity at a certain depth as a dependent 
variable and pursued a consistent derivation of the governing equations using this 
non-standard dependent variable. In the end, the choice of the representative depth 
was again constrained by the goal of obtaining the most accurate possible dispersion 
relation. Although the methods of derivation are different, the resulting dispersion 
relations of these extended Boussinesq equations are similar, and may be thought of 
as a slight modification of the (2,2) Pad6 approximant of the full dispersion relation 
(Witting 1984). Both expressions are much closer to the exact solution in intermediate 
water depths than are the standard Boussinesq equations. Madsen et al. and Nwogu 
have shown by example that the extended equations are able to simulate wave 
propagation from relatively deep to shallow water. Wei & Kirby (1995) developed 
a high-order numerical model based on Nwogu’s equations, and provided additional 
validation tests of the model. 

Despite their improved dispersion relation, the extended Boussinesq equations are 
still restricted to situations with weakly nonlinear interactions. In many practical cases, 
however, the effects of nonlinearity are too large to be treated as a weak perturbation 
to a primarily linear problem. As waves approach shore, wave height increases 
due to the effect of shoaling, and wave breaking occurs on most gentle natural 
slopes. The wave height to water depth ratios accompanying this physical process 
are inappropriate for weakly nonlinear Boussinesq models, and thus extensions to the 
model are required in order to obtain a computational tool which is locally valid in 
the vicinity of a steep, almost breaking or breaking wave crest. 
An additional (and less obvious) limitation imposed by weak nonlinearity in the 

Boussinesq model occurs in the higher-frequency range, which is precisely the range 
of linear behaviour incorporated by the modifications of Madsen et al. and Nwogu. 
As an illustration, we consider the range of validity for Boussinesq wave models in 
figure 1, where the horizontal and vertical axes represent dispersive effects ( p 2  = ( k ! ~ ) ~ )  
and nonlinear effects (6 = a/h) ,  respectively. The standard Boussinesq equations are 
based on the assumption that 6 , p  << 1 and 6 / p 2  = 0(1), after which terms of 
0 ( / ~ ~ , 6 p ~ , 6 ~ )  are neglected. The range of validity is thus bounded not only by some 
arbitrary value for 6 and p2, but also by the curve c1 which represents some value 
of 6p2.  For the sake of illustration, let us suppose that the limit of validity for the 
standard approximation corresponds approximately to 6 = p2 = 0.2. The value of c1 

is then around 0.04, as shown in figure 1. It is apparent that the limit of usefulness of 
the standard model is not controlled primarily by c1, which represents the neglected 
nonlinear effects in dispersion terms. If we introduce the model extensions of Madsen 
et al. or Nwogu, however, the implied limit of validity for p2 becomes much higher. We 
see that this extended region is reduced in size by the neglected nonlinear dispersive 
terms, represented by the region above cl. 

The extension of the range of validity of the linear models achieved by Madsen et al. 
and Nwogu is limited in the nonlinear regime by the fact that the curve c1 approaches 
the horizontal axis. This places serious constraints on the wave steepnesses which are 
actually allowed in intermediate water depth. The introduction of a fully nonlinear 
model within the context of the Boussinesq dispersion approximation formally pushes 
the upper envelope to a level controlled by the required smallness of 6p4, as illustrated 
by the curve c2. We thus seek to achieve a wider range of validity for the model over 
the entire range of water depths. 

Fully nonlinear models for moderately long water waves have been developed and 
studied for several decades. Using a power series expansion, Su & Gardner (1969) 
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P2 
FIGURE 1. Hypothetical limits of validity of approximate long wave models. Dark gray - standard 
Boussinesq models. Light gray - additional region of validity for extended Boussinesq models of 
Madsen et al. (1991) and Nwogu (1993). Curve c1 denotes 6p2  = 0.04. Curve c2 denotes 6p4 = 0.04. 

investigated a fully nonlinear formulation from which they were able to derive KdV 
and Burgers equations for a class of nonlinear Galilean-invariant systems. Using 
standard perturbation methods and the depth-averaged velocity, Mei (1989) derived 
Boussinesq equations for constant depth with no assumption of small nonlinearity. 
Neither of these models was utilized in any practical calculations. 

The theory of fluid sheets proposed by Green & Naghdi (1976) provides an alternate 
method for constructing model equations for nonlinear wave propagation. In most 
applications of Green & Naghdi's method, a polynomial approximation of the internal 
flow field structure is introduced into the integral conservation laws. The resulting 
models approximately satisfy the field equations, but nonlinear free surface boundary 
conditions are exactly satisfied. Demirbilek & Webster (1992) have described an 
application of Green & Naghdi's method to the development of a shallow water 
wave model. Numerous computational examples were provided, but no comparison 
to experimental data or more exact solutions to the governing equations was made. 
Miles & Salmon (1985) obtained equations equivalent to Green & Naghdi's first 
level of approximation by employing Hamilton's variational principle. They further 
obtained a canonical form of Boussinesq equations, using the velocity potential at the 
still water level as the dependent variable. No computations were carried out, and, in 
fact, this model is formally unstable for large values of the wavenumber. 

Perturbation methods and the theory of fluid sheets reduce the dimensionality 
of the original water wave problem by one, but the resulting equations are no 
longer exact. Alternatively, numerical schemes can be developed to directly solve the 
original fully nonlinear potential flow (FNPF) problem, for which there is no error 
in the governing equations. Following the principles outlined by Longuet-Higgins & 
Cokelet (1976) for the computations of two-dimensional space-periodic deep water 
waves, many investigators developed increasingly accurate and general FNPF models. 
The FNPF model of Grilli, Skourup & Svendsen (1989) and Grilli (1993) solves the 
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original equations in physical space, using a two-dimensional boundary element 
method (BEM) formulation that reduces dimensionality by one. This model has 
been extensively tested against laboratory data for the case of shoaling and breaking 
solitary waves by Grilli et al. (1994~).  The results of this comparison show that the 
FNPF model predictions are in strikingly close agreement with measured data, and 
we thus accept the FNPF model as a standard of accuracy in the examples considered 
below. 

In this study, a fully nonlinear Boussinesq model (FNBM) is derived following 
the approach of Nwogu (1993), using the velocity at a certain depth as a dependent 
variable. We deviate from the usual Boussinesq approximation by retaining full 
nonlinearity in the free surface boundary conditions. Results of computations with 
the FNBM are compared to results of numerical solutions of the FNPF equations 
obtained using the BEM model of Grilli et al. (1989), and to results of the extended 
Boussinesq model (BM) of Nwogu (1993), as modelled by Wei & Kirby (1995). A 
detailed derivation of the FNBM equations is presented in 9 2. In 8 3, a high-order 
predictor - corrector method is developed to solve these equations. The boundary 
element solution of the FNPF is reviewed in 0 4, and extensive references are given 
for more detailed explanations. In 9 5 ,  numerical results from Boussinesq models with 
and without strong nonlinearity are compared in detail to BEM results for solitary 
wave shoaling on slopes and undular bore propagation. A summary of findings and 
conclusions is presented in 9 6. Additional analysis of the model in the intermediate 
depth regime (employing a Stokes expansion) will be addressed in Kirby & Wei 
(1995). 

2. Derivation of equations 
We proceed, using standard techniques, to construct the fully nonlinear form of 

the governing equations based on a series solution for Laplace's equation in the fluid 
interior. Following Mei (1989), we use a reference wavenumber l~ to scale horizontal 
distances x , y ,  a reference water depth ho to scale the vertical coordinate z and local 
depth h(x,y) and amplitude a to scale the surface displacement q. We then introduce 
the parameters 6 = a / h  and p2 = ( I Q ~ ) ~ .  Based on these, we choose a scale of 
(lQ(gh)'/2)-' for time t and 6ho(gho)1'2/p for velocity potential 4. Introducing these 
scales into the boundary value problem for inviscid, irrotational motion leads to the 
problem 

(2.1) 
4z +p2Vh.V4 =O; z = -h, (2.2) 

$zz + p2V24 = 0; -h < z < 6q, 

(2.4) 
1 

We develop an equation expressing volume flux conservation by integrating (2.1) over 
z from -h to 6q and using (2.2) and (2.4) to obtain 

qr+6V4.Vq--q5z =o;  z = 6 q .  
P2 

h 
qt + V M = 0; M = Lh V4dz. (2.5) 

In the following, we use (2.5) to obtain expressions for mass conservation, while a 
momentum equation is obtained using the Bernoulli equation (2.3). (This procedure is 
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not unique; for example, Mei (1989) proceeds by substituting approximate expressions 
for 4 directly in the surface kinematic boundary condition rather than using an 
integrated volume conservation expression, while Nwogu (1993) and others use depth- 
integrated forms of the Euler equations to develop the momentum equations.) 

2.1. Approximate expression for the velocity potential 
As in previous studies of weakly dispersive shallow water waves, we reduce the 
dimensionality of the boundary value problem by introducing a series expansion for 
4. An expression for 4 which retains terms to O(p2) and satisfies the bottom boundary 
condition is given by 

v240 + 0(p4) (2.6) 
2 ( h  + z)2 

2 
4 = 4o(x, t )  - p2(h + z)Vh - v40 - p 

where 40 is the value of the velocity potential at z = 4. In practice, we may replace 
40 by the value of the potential at any level in the water column. Any choice will 
lead to a set of model equations with the same level of asymptotic approximation but 
with numerically different dispersion properties. Following Nwogu (1993) and Chen 
&. Liu (1999, we denote $a as the value of 4 at z = za(x, y ) ,  or 

2 ( h  + v240 + 0 ( ~ 4 ) .  (2.7) 2 4 a  = 4 0  - p2(h + za)Vh V ~ O  - P 

This expression is then used in (2.6) to obtain an expression for 4 in terms of 4 a :  

(2.8) 1 2  2 4 = 401 + p2(za - Z)V (hV4a) + zp (za - z2)V2+a + 0(p4). 
This form of the velocity potential is then used in the governing equations to obtain 
the approximate models. 

2.2. Two-equation model for q and 4 a  
First, a two-equation model for q and 4a is developed. The expression for M in (2.5) 
becomes 

M = ( h  + 61) [V4a + p2 {V [ZaV (hV4a) + ;zfV’&a] 

The expression goes to zero identically as the total depth h + 6 q  goes to zero, which 
serves as a natural shoreline boundary condition. 

The corresponding form of the Bernoulli equation (2.3) becomes 

+ $at + ;(V4aI2 + p2 [(Za - 6 q ) v  (hv4at) + i(z:  - ( 6 q ) 2 ) ~ 2 4 a t ]  

+ Sp2 (V4a VzaV (hV4a) + ( z a  - G~)V(V (hv4a)) l )  
+ 6p2 {V4a [zaVzaV24a + $(zf - ( ~ q ) ~ ) v ( v ~ 4 a ) ] }  

+ Sp2 { f [V (hv4a)12 + S ~ V .  (hV4a)V24a + i ( ~ q ) ~ ( ~ ~ 4 a ) ~ }  = o (2.10) 

Equations at the order of approximation of the usual Boussinesq theory may be 
immediately obtained by neglecting terms of O ( 6 )  or higher in the O(p2) dispersive 
terms. The modified expression for volume flux M is 

M = ( h  + Sq)V4a + p2  { hV [ZaV (hV4a) + iz;V24pl] 

++h2v(v  (hV4a)) - ~ I I ~ V ’ V ~ ~ }  (2.11) 
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and the Bernoulli equation reduces to 
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q + $at + iS(V$a)2 + p2 [ Z a v  (hV4at) + iz,'v24at] = 0. (2.12) 

Equations (2.11) and (2.12) were given previously by Chen & Liu (1995). These 
results may be compared to the two-equation model of Wu (1981), which uses the 
depth-averaged value of 4. The models are the same to within rearrangements of 
dispersive terms. 

2.3. Three-equation model based on q and ua 
We further introduce a horizontal velocity ua as ua = V$lzm. Retaining terms to O(p2)  
and to all orders in 6 gives a fully nonlinear version of the model with volume flux 

M = ( h  + 6 q )  [ua + p2 { [!z: - i (h2  - ha? + ( S ? ) ~ ) ]  V(V * ua) 

+ [za + j(h - Sq)]  V(V (hua))}] + W4) (2.13) 

and momentum equation 

uat + 6(ua . V)ua + v q  + p2 ~ 1 +  6p2 ~2 = 0(p4) (2.14) 

where 

Vl = ~z:V(V uat) + ZaV(V ( h a , ) )  - V [ 4 ( 6 ~ ) ~ V  + 6qV ( h a t ) ]  (2.15) 

Vz = V [(za - Stl)(ua * V)(V (hua)) + :(z: - (6q)2)(ua * V)(V * uto] 

+iV [(V ( h a )  + 6qV ~ a ) * ]  . (2.16) 

The Boussinesq approximation of Nwogu (1993) is recovered by neglecting terms 
of O(p4, 6p2), yielding the expressions 

M = (h  + 6q)Ua + J { (!hz: - i h 3 )  V(V * u,) + (hza + i h 2 )  V(V (hu,))} (2.17) 

and 

Uat + 6(ua V)Ua + Vq + /A' { iz,'V(V * U a t )  + ZaV[v (huat)]} = O(6p2, p4) (2.18) 

As a final note, we point out that the fully nonlinear models derived here all have 
mass flux M 0 at the shoreline, where h+6? + 0. This result is expected on physical 
grounds and appears in the nonlinear shallow water equations and in Boussinesq 
models where the depth-averaged velocity is the dependent variable. This condition 
is not automatically satisfied by Nwogu's or any weakly nonlinear Boussinesq model 
based on a velocity other than the depth-averaged value, making the application of 
these models problematic at the shoreline. All fully nonlinear variations of any of the 
possible model systems should recover this condition correctly. 

3. Numerical scheme 
A high-order predictor-corrector scheme is utilized to obtain the results described 

below. The scheme is similar to that of Wei & Kirby (1995), with the inclusion 
of extra nonlinear terms. The high-order numerical scheme is employed in order 
to eliminate truncation errors which have the same form as dispersive terms in 
the equations. Although the truncation terms will be eliminated in the limit as 
Ax + 0, Ay + 0, At + 0 in any consistent schemes, these terms may be the 
same magnitude as dispersive terms for a second-order scheme using typical grid 
resolutions. Usually, back substitution of the truncation terms must be performed to 
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obtain accurate answers (Abbott, McCowan & Warren 1984; Nwogu 1993). In this 
study, we discretize the first-order spatial derivative terms to fourth-order accuracy by 
using standard five-point finite-differencing, leading to truncation errors of O(Ax4/p2) 
relative to the dispersive terms. In contrast, the dispersive terms themselves are 
finite-differenced only to second-order accuracy, leading to error terms of O(Ax2) 
relative to the actual dispersive terms. The system of equations is written in a form 
that makes the application of a higher-order time-stepping procedure convenient. 
The fourth-order Adams-Bashforth-Moulton predictor-corrector scheme is employed 
to perform this updating. The high-order discretization of first-order spatial and 
temporal derivative terms guarantees that the truncation error terms do not have the 
same form as that of dispersive terms in the equations, and thus no back substitution 
is required. 

The FNBM in dimensional form for two-dimensional flow can be rewritten as 

where q is the surface elevation, u and u are the horizontal velocities at z = za = 
-0.531h, and U and V are defined as 

which are treated as simple variables in the time-stepping scheme. The remaining 
quantities E, E2, F, F1, F2, G, GI and G2 are spatial derivatives of q,  u, u, ut or uc 
which are defined as 

(3.11) 

(3.12) 
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2 2  

G2 = - { $ ( z a  - v )[U(UX + U y ) x  + 4% + vy),l}  Y 

- { (za - r l )  [u[(hu)x + (hu)ylx + u[(hu)x + ( W y l y ]  }y 

1 

Y 
-2 { [(hu)x + ( W y  + d u x  + U,)]'} 
+ { $V2[(Ut)x + (471 + v([h(ut)lx + [h(utlly)}y * (3.13) 

E2, F2 and G2 are the additional high-order nonlinear terms which would not exist 

a1 = P2/2 - 1/6, uz = f i  + 1/2, bl = P2/2, b2 = P, (3.14) 

where f l  = z,/h. For the form of the Boussinesq equations based on depth-averaged 
velocity, the constants reduce to 

a1 = 0, a2 = 0, bl = 1/6, b2 = -1/2. (3.15) 

The arrangement of cross-differentiated and nonlinear time-derivative terms on the 
right-hand side of equations (3.2H3.3) makes the resulting set of left-handed sides 
purely tridiagonal. The governing equations are finite-differenced on an un-staggered 
grid in x = iAx, y = j A y ,  t = nAt. Level n refers to information at the present, known 
time level. The predictor step is the third-order explicit Adams-Bashforth scheme, 
given by 

for weakly nonlinear equations. The constants a1, a2, bl, b2 are defined as 

$7' = vl?j + - At [23(E1)b - 16(E'&j1 + 5(E I ) i j  n-2 ] , 

Uc+' = Ut, + - At [23(F1)tj - 16(F')t71 + 5(F I )i,j n-2 ] 9 

%f1 = VG + - At [23(G')b - l6(G')!y1 + 5(G I ) i j  n-2 ] , 

(3.16) 

(3.17) 

(3.18) 

12 

12 

12 
where 

E' = E + E2, (3.19) 
F' = F + (Fi), + FZ, (3.20) 
GI = G + ( G I ) ~  + Gz. (3.21) 

All information on the right-hand sides of (3.16H3.18) is known from previous 
calculations. The values of qbj' are thus straightforward to obtain. The evaluation of 
horizontal velocities at the new time level, however, requires simultaneous solution of 
tridiagonal matrix systems which are linear in the unknowns at level n + l .  Specifically, 
for a given j ,  uG1(i = 1,2, ..., M) are obtained through tridiagonal matrix solution. 
Similarly, u;+'(j.= 1,2, ..., N) are solved by a system of tridiagonal matrix equation 
for given i .  The matrices involved are constant in time and may be pre-factored, 
inverted and stored for use at each time step. 

After the predicted values of t$"', u z 1  and I$'' are evaluated, we obtain the 
corresponding quantities of E;'', (Ez);", Fc+', (FZ)!~', ( F z ) t j ,  (F2)t;1y (F2G2, G;'', 
(G2&+', (GZ);., (G# and (G2G2, and apply the fourth-order Adams-Moulton 
corrector metiod 

(3.22) 

(3.23) 

~b'' = Y& + 24 At [9(E'G1 + 19(E')$ - 5(E1)F1 + (E I )ij n-2 ] , 

U;'' = U:' + - [9(F');'' + 19(F')$ - 5(F');'' + (F1);'2] , At 
24 
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(3.24) TT1 = VG + - [9(G');'' + 19(G'): - 5(G');Y1 + (G )i,j ] . 

From the definition, we see that the calculation of F2 and G2 at a certain time level 
requires the corresponding values of uf and of. Also, the terms (F1)[ and (G1), involve 
time derivatives. For the predictor stage, values of u, u, Fl and G1 at the time level 
n - 2, n - 1 and n are known, then the corresponding derivatives are evaluated as 

I n-2 At 
24 

(3.25) 

(3.26) 

(wt)F2 = - [3w;Y2 - 4~;'' + + O(At2). (3.27) 

1 

1 
2At 
-1 
2At 

(Wt)tj = [ 3 ~ $  - 4~;' + w:'~] + O(At2), 

[wtj - wZT2] + O(At2), ( W f ) F 1  = - 

For the corrector stage, we evaluate wt according to 

1 
6At 

1 
6At 
-1 
6At 

(3.28) 

(3.29) 

(3.30) 

(wt&'j' = - [llw:'' - 18w; + 9~:;' - 2wG'j2] + O(Af). 

(wt)tj = - [2w:;l + 3w$ - 6~;'' + w;T2] + ()(At3), 

(w )n-1 = - [2w;T2 + 3w;' - 6w> + wb'j'] + O(At3), 
f i j  

where w represents u, u, F1 or G1 . The corrector step is iterated until the error 
between two successive results reaches a required limit. The error is computed for 
each of the three dependent variables q ,  u and u and is defined as 

Af = (3.32) 

where f denotes any of the variables and ()* denotes the previous results. The 
corrector step is iterated if any of the Af exceeds 

For the weakly nonlinear case, the scheme typically requires no iteration unless 
problems arise from the boundary. However, for strong nonlinearity, the model tends 
to take more iterations. Further analysis showed that the iterated results oscillated 
around the desired solution. To increase the convergence rate, we applied an over- 
relaxation technique to the iteration stage. Writing the previous and current iterated 
values as f;j and fu, then the adjusted value fb  for over-relaxation is given by 

(3.33) 

where R is a coefficient which is in the range (0,l). In all computations, we found 
that R = 0.2 gave quite satisfactory results. 

f" v = (1 - R)f,:j + Rfij 

4. A review of the boundary element model 
Equations and numerical methods for the FNPF model are briefly reviewed here. 

Details can be found in Grilli et al. (1989), Grilli (1993), and Grilli & Subramanya 
(1994). The velocity potential 4(x, t) is used to represent inviscid irrotational two- 
dimensional flows in the vertical plane (x, z )  and the velocity is defined by u = V4 = 
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FIGURE 2. Definition sketch for both the FNPF computations and for the Boussinesq models. 

(u,w)  (figure 2). The continuity equation in the fluid domain a(t) with boundary r(t) 
is Laplace’s equation for the potential 

v24 = o in a(t). (4.1) 
Using the free space Green’s function, G(x,xl) = -(1/2n) log 1 x - XI I, and Green’s 
second identity, equation (4.1) transforms into the boundary integral equation (BIE) 

in which x = (x,z) and XI = (x/,zl) are position vectors for points on the boundary, 
n is the unit outward normal vector, and (r(x1) is a geometric coefficient. 

Equation (4.2) is solved by a boundary element method (BEM), using a set of col- 
location nodes on the boundary and higher-order elements to interpolate in between 
the collocation nodes. Integrals in (4.2) are evaluated numerically and the resulting 
algebraic system of equations is assembled and solved for the equivalent discretized 
problem. 

Along the stationary bottom r b ,  a no-flow condition is prescribed by 

(4.3) 

Waves can be generated in the model by simulating a piston wavemaker motion 
on the ‘open sea’ boundary of the computational domain, rrl(t), or by specifying the 
potential, 4, normal velocity, d$/an, and the elevation, q, at initial time to for the 
incident wave, directly on the free surface. 

On the free surface rf(t), 4 satisfies the kinematic and dynamic boundary condi- 
tions, 

D4 Pa - = -gz + S V ~  - VC#J - - 
Dt P 

on ~ f ( t ) ,  (4.5) 

respectively, with r, the position vector on the free surface, g the gravitational 
acceleration, z the vertical coordinate, pa the pressure at the free surface, assumed 
zero in the applications, and p the fluid density. 

Free surface boundary conditions (4.4) and (4.5) are integrated in time based on 
two second-order Taylor series expansions for 4 and r expressed in terms of a time 
step At and of the Lagrangian time derivative, D/Dt, in a mixed Eulerian-Lagrangian 
formulation. Terms in both series expansions are calculated by solving two BIEs of 
the type (4.2) for 4 and a4/at in sequence at each time step, the solution of the first 
BIE providing boundary conditions for the second BIE. 
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Trajectories of individual free surface particles - identical to nodes of the BEM 
discretization - are thus calculated as a function of time using the Taylor series. 
The time step in the model is adaptively selected based on a mesh Courant number 
to ensure optimal accuracy and stability of the computations (optimal value m 0.5). 
In the applications, spatial and temporal discretizations were selected for the errors 
on wave volume and energy to stay to within 0.05% during most of the wave 
propagation (see Grilli & Subramanya 1994, for details of typical discretizations, 
numerical parameters, and computational errors for solitary wave shoaling in shallow 
water). 

5. Results 
The fully nonlinear Boussinesq model (FNBM) and the FNPF model described 

above were applied to study two cases of one-dimensional wave propagation. By 
setting E2 = F2 = GZ = 0 in the FNBM, we also recover Nwogu’s modified Boussinesq 
model (BM), in which nonlinearity is assumed to be small but dispersive properties 
are improved compared to standard Boussinesq models. Results from the extended 
Boussinesq models with and without strong nonlinearity are compared in detail with 
FNPF results for the examples shown below. In the first casestudy, computations 
of solitary waves shoaling over plane slopes are made. We consider three solitary 
waves with different initial height, 6 = Ho/ho, propagating over four different slopes 
s ranging from gentle (1 :loo) to steep (1 :8) (figure 2). We compare the wave shapes, 
shoaling rates, crest celerity and other properties for the three models. The second 
case involves undular bores of initial height HO propagating into water of constant 
depth h, with a nonlinearity parameter 6 = Ho/~Q. The shapes and heights of the 
bores are compared for three initial conditions corresponding to weak and strong 
nonlinearity. As expected, for cases with strong nonlinearity, results from the FNBM 
compare much better with the FNPF results than those of the BM, due to the 
additional nonlinear terms included in FNBM. 

5.1. Solitary wave shoaling on slopes 
The first example considered is the shoaling of solitary waves over a plane slope. The 
solitary wave example is a good test for the model in that it allows for a careful test of 
the propagation speed of an isolated pulse in the absence of any extra noise sources 
(such as reflections). In addition, the wave height to water depth ratios reached prior 
to breaking are higher than for most periodic incident waves, and thus a more severe 
test is made of the nonlinear portion of the model. 

Figure 2 shows the computational domain, which consists of a constant depth 
ho on the left and a constant slope s on the right. Coordinates were set such that 
the toe of the slope correspond to x = 0. In the Boussinesq models, solitary waves 
were generated at the leftward boundary and propagated to the right. Four different 
slopes of s = 1 :loo, 1 :35, 1 :15 and 1 :8 are used in the computations. On each slope, 
the incident wave height is varied from 6 = 0.2 to 6 = 0.6, which corresponds to a 
variation from weak to strong nonlinearity in the incident wave. The length, time 
and velocity variables are scaled by ho, (hO/g )1 /2  and (gh#/2, respectively, and the 
resulting dimensionless variables are denoted by primes. 

The permanent-form solitary wave solution obtained for the same initial height in 
the three models is different due to different levels of approximation in the equations. 
In the FNPF computations, an exact solution of the fully nonlinear equations, 
obtained using Tanaka’s (1986) method, was used as an initial wave and introduced 
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FIGURE 3. Comparison of FNPF (-), BM (- - - - -), and FNBM (- - -) for incident solitary 
wave shape for 6 = 0.6. 

directly on the free surface. Wei & Kirby (1995) derived an approximate analytical 
solution to the BM equations assuming weak nonlinearity. In order to obtain initial 
conditions for the present computations, we first ran the BM and FNBM models 
with the approximate expression for the solitary wave as initial condition. This 
solution was run over a long distance with constant depth. At the beginning of these 
computations, wave heights and wave shapes kept changing, and small oscillatory 
tails developed behind the main waves as they propagated in the models. After 
running the models for a long time, however, the changes of form became negligible 
and wave shapes stabilized, indicating that a numerical permanent-form solitary 
wave solution corresponding to each of the Boussinesq models was obtained. These 
solutions were then used as input for the computations of solitary wave shoaling over 
slopes. Since the initial wave changed shape and height in the BM and FNBM model 
runs, several runs were required to obtain a permanent-form solitary wave with the 
desired height. A comparison of the incident solitary wave for the three models for 
the most nonlinear wave height 6 = 0.6 is shown in figure 3. The shape for the 
BM solitary wave is narrower than for the Tanaka solution. In contrast, the solitary 
wave shape produced by the FNBM solution is almost indistinguishable from the 
Tanaka solution, with discrepancies limited to a slight narrowing of the crest seen 
at elevations around half the wave height above the still water level. To account for 
the slight difference in solitary wave solutions for constant depth in the three models, 
results of computations were synchronized at t’ = 0 in the comparison when wave 
crests reached the toe of the slope, x’ = 0. 

A comparison of evolving solitary wave profiles obtained in the three models is 
shown in figure 4. The four plots, (a) ,  (b), ( c )  and ( d )  correspond to slopes of 1:100, 
1:35, 1:15, and 1:8, respectively. The wave heights are 6 = 0.2 for (a) ,  (b )  and ( d )  
but 6 = 0.3 for (c). The first profile to the left in each figure corresponds to the 
waves being at a location roughly half way up the slope. Wave asymmetry is not 
too pronounced yet, and one can see that both Boussinesq solutions agree quite 
well with the FNPF solution. The last profile in figure 4(a, by c )  corresponds to the 
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theoretical breaking points in the FNPF computations, for which the wave has a 
vertical tangent on the front face. No breaking occurs for the condition in figure 4(d). 
Breaking occurs in figure 4(b) for t' = 25.94 at 4 = 25.90, and with a breaking 
index H b / h b  = 1.402. This breaking point was found by Grilli et al. (1994a,b) 
to also closely correspond to measured breaking locations and characteristics in 
well-controlled laboratory experiments. 

Results in figure 4 show that, with both the BM and the FNBM models, the wave 
crests travel almost at the right speed in the early shoaling. For the s = 1:lOO slope, 
the BM and FNBM wave crests continue to grow in height while the FNPF pitches 
forward and decreases in height just prior to breaking. The results of the FNPF and 
FNBM models differ most in this case. For the steeper beaches the FNBM predicts 
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both the wave height and crest position with much greater accuracy than the BM 
model. The BM results on the three mildest slopes indicate that the wave significantly 
overshoals as compared to the FNPF results, particularly in the upper slope region, 
and a spurious secondary trough is predicted behind the main crest. With the FNBM, 
however, overshoaling is much less pronounced, and the spurious troughs are almost 
non-existent. 

Results for the relative wave height, H / h ,  computed with all three models, are 
given in figure 5 as a function of x’. Symbols (0) denote the FNPF breaking point, 
determined by the x’ location where the wave reaches a vertical tangent on the 
front face. One can see that, as expected from the above discussion, relative wave 
height is significantly overpredicted at the breaking point in the BM, whereas little 
or no overprediction occurs in the FNBM. Beyond the theoretical breaking point, 
wave heights grow in an unbounded fashion in both Boussinesq models. Figure 5 
also shows that, with the BM, overshoaling mostly occurs in the region of high 
nonlinearity (i.e. high H / h )  closer to the breaking point. This is due to insufficient 
nonlinear effects included in the BM equations; much of the error is eliminated in 
the FNBM. 

Wave celerities were calculated for three incident wave heights, for each slope, using 
all three models. First, we obtained the time series of the crest location x:. Then three- 
point finite differencing was applied to compute the crest celerity c:. The estimation 
of the celerity values from the Boussinesq models was fairly straightforward, and the 
results are well represented by an ll-point running average fit to the values of c‘,. 
For the FNPF model, the celerity estimates exhibited a great deal of jitter, and also 
exhibited a much more complex functional dependence on x’ due to the rapid change 
of the wave crest at and just beyond the breaking point. For this model, results are 
presented in terms of a 25th-order polynomial fit to the original raw data. All data 
processing was done using Matlab. 

Results are reported in figure 6 for the crest celerity c: = (dxc/dt)(gh)1/2, as a 
function of crest location xi. The corresponding incident wave celerity cb is almost 
identical in all three models. Results show that both Boussinesq models slightly 
underpredict the wave crest celerity as compared to the FNPF results for most of 
the shoaling process, with a larger discrepancy close to the breaking point. This was 
already observed in figure 4. 

Particle velocity at the crest is defined as V,l = ($ + w : ~ ) ” ~ ,  where u: and wi 
are the horizontal and vertical velocity components. The comparison of V,l for all 
three models is shown in figure 7(a, b, d )  for 6 = 0.2 and in figure 7(c) for 6 = 0.3, 
where corresponding crest celerities have also been reproduced from figure 6. The 
FNPF model predicts, as expected, that Vi 2 c‘, at breaking on the three milder 
slopes (in fact slightly beyond the breaking point). The particle velocity at the crest 
in the BM starts diverging from the FNPF solution about half way up the slope 
and becomes quite large. This result is due to the overshoaling in the BM wave and 
the resulting overprediction of downward crest curvature. In contrast, the particle 
velocity in the FNBM stays quite close to the FNPF prediction up to the breaking 
point for all but the gentlest slopes. In fact, despite the discrepancies at breaking 
in the FNBM, Vf = c: (i.e. breaking) occurs at roughly the same location as in the 
FNPF model. 

Vertical profiles of horizontal velocity at three different locations are shown in 
figure 8 for the case of 1 :35 slope and wave height 6 = 0.2. In the Boussinesq models, 
the horizontal velocity at a certain depth z = z, = -0.531h and the corresponding 
derivatives are computed. Then the variation of horizontal and vertical velocity with 
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RGURE 5. Comparison between FNPF (-), BM (- - - - -), and FNBM (- - -) of shoaling 
rates, H / h ,  for solitary waves with 6 = (i) 0.20, (ii) 0.40, (iii) 0.60 in (u),(b),(d) and 6 = (i) 0.30, (ii) 
0.45, (iii) 0.60 in (c); shoaling on a slope: (a) 1:lOO; (b) 1:35; (c) 1:lS; ( d )  1:8. Symbols (0 )  denote 
locations of the breaking point for which the wave has a vertical tangent on the front face. 

water depth z is given by 

w = -(h + z)(u,), - hxu,. 

Generally, the velocity profiles of FNBM compare quite well with those of FNPF. The 
FNBM predict average, surface and bottom velocities reasonably accurately, the main 
discrepancy being the underprediction of profde curvature owing to the limitation 
of the quadratic velocity profile used in the model formulation. Most notably, the 
prediction of the kinematics retains its accuracy up to the wave breakpoint. 

The comparison of velocity profiles between BM and FNPF is less satisfactory. The 
combined effects of incorrectly predicted values of ua and the overprediction of wave 
heights and crest curvature in the BM result in larger horizontal velocities, especially 
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FIGURE 6. Comparison between FNPF (-), BM (- - - - -), and FNBM (- - -) of crest celerity 
d, for the same solitary waves and slopes as in figure 5. Symbols (0) are defined as in figure 5. 

at the crest. Horizontal velocities are overpredicted by almost 50% over much of the 
final stage of shoaling in the BM. 

5.2. Evolution of an undular bore 
The second example chosen to compare the three models is that of an undular bore 
propagating into constant-depth, still water. This problem has been studied by a 
number of investigators and serves as a standard illustration of competing effects 
of dispersion and nonlinearity. Peregrine (1966) compared the differences between 
Boussinesq theory and Airy’s theory for nonlinear long waves using this example. As 
shown in figure 9, the initial condition is a gentle transition between a uniform flow 
and still water: 

u = $ ~ [ l  - tanh(x/a)], 

q = u + $2, 
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where q and u are the surface elevation and the horizontal velocity, x is the horizontal 
coordinate with x = 0 corresponding to the centre of the initial bore, ~0 is the velocity 
of uniform flow from the left boundary, and a is a number sufficiently large enough 
that the initial motion could be described by Airy's theory. In all the computation 
below, we use a = 5. Three different values of uo are chosen so that the surface 
elevations at the left boundary are qo = 0.1,0.2,0.3. Owing to the presence of vertical 
acceleration in the transition region between the two uniform-depth asymptotes, waves 
are generated from the initial smooth transition in models incorporating dispersive 
effects. The number and height of waves increases gradually with time, until a 
nearly uniform cnoidal wave train is developed which radiates the energy lost in the 
transition from one uniform depth to another. 

In order to compute the initial evolution of the undular bore, the initial solution 
(q(x), u(x ) )  used in Peregrine (1966) is introduced as the initial wave. For the FNPF 

- 
v: , 

I I I I I I 
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model, the corresponding initial free surface potential 4(x) is obtained by integrating 
u(x)  as a function of x and the initial normal velocity d$/an(x)  is obtained by 
projecting u(x) on the normal direction. 

Figures 9 and 10 show the comparison of wave profiles at different times. For small 
values of qo as in plot (a),  results from BM and FNBM are very close, indicating 
that the effects of the higher-order nonlinear terms in FNBM are negligible for small 
nonlinearity. For large values of qo as in (b)  and (c),  the wave heights predicted by 
BM are larger than those predicted by FNBM, and the predictions of the FNBM 
agree more closely with the FNPF model. In addition, the wave crest speeds predicted 
by FNBM are closer to FNPF model results than are those predicted by BM for all 
wave crests in the evolving wave train. 

In figure 11, we plot the elevations of the first three wave crests and wave troughs 
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FIGURE 9. Comparison between FNPF (--) , BM (- - - - -), and FNBM (- - -) of free surface 
elevations for undular bores with initial height 6 = (a) 0.10; (b)  0.20; and (c) 0.30 at times t': 
tl = 10, t 2  = 20, t 3  = 30, t 4  = 40, t 5  = 50, t,5 = 60, t7 = 70. 

as a function of distance travelled for the same three conditions as in figures 9 
and 10. We see that, in general, both crest elevations and trough depths increase 
with time, as was noted by Peregrine and other investigators. For small nonlinearity 
(figure lla), results from BM are similar to those of FNBM, and both Boussinesq 
models overpredict wave height compared to the FNPF model. However, for large 
nonlinearity, the FNBM does a reasonable job of predicting the height of the leading 
wave crest and an excellent job of predicting the subsequent crests and troughs, 
compared to the FNPF. The wave heights from BM are no longer close to those of 
FNBM, indicating that the additional nonlinear terms in FNBM are important for 
this case. Aside from the phase speed difference, the wave crests and troughs from 
FNBM compare quite well with the predictions of the FNPF. 
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FIGURE 10. Comparison between FNPF (-), BM (- - - - -), and FNBM (- - -) of free surface 
elevations for undular bores with initial height S = (a) 0.10; (b )  0.20; and (c) 0.30, at time t ' :  
fs = 50, t 6  = 60, t 7  = 70. 

6. Conclusions 
We have derived a fully nonlinear model for shallow water wave propagation using 

a standard lowest-order Boussinesq approximation for the fluid kinematics. The 
internal flow field is defined with respect to the horizontal velocity at a depth zor in 
the water column, following the procedure of Nwogu (1993). The resulting equations 
have improved linear dispersion properties in intermediate depth water and are not 
limited to small nonlinearity. A high-order numerical model was developed and 
applied to study two cases of one-dimensional wave propagation. Results from the 
Boussinesq model with and without the strong nonlinearity extension were compared 
to results obtained using a BEM solution for fully nonlinear potential flow (FNPF), 
which served as the reference solution. 

From the numerical calculations, we found that in strongly nonlinear situations 
(such as wave evolution just prior to wave breaking), the FNBM model provides 
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FIGURE 11. Comparison between FNPF (-), BM (- - - - -), and FNBM (- - -) of results for the 
height of C1, fist; Cz, second; and C3, third crest and TI ,  first; T2, second; and T3, third trough, 
of undular bores with initial height 6 = (a)  0.10; (b)  0.20; and (c) 0.30. 

significantly improved predictions of wave heights and internal kinematics relative 
to the weakly nonlinear BM model. In particular, the magnitudes of horizontal 
velocities are similar to those predicted by FNPF except at the breaking point, where 
the FNBM model underpredicts the concavity of the velocity profile. This feature is 
almost certainly due to the neglect of higher-order terms in the approximation of the 
velocity potential, and is one indication that an approximation to 0(p4), retaining 
quartic terms in z in the velocity potential, could possibly be profitably pursued. This 
investigation is presently underway and will be reported on in the near future. 
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