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a b s t r a c t

Archaeological remains are valuable relative sea-level (RSL) indicators in Israel, a tectonically stable coast
with minor isostatic inputs. Previous research has used archaeological indicators to argue for centennial
sea-level fluctuations. Here, we place archaeological indicators in a quality-controlled dataset where all
indicators have consistently calculated vertical and chronological uncertainties, and we subject the data
to statistical analysis. We combine the archaeological data with bio-construction data from Dendropoma
petraeum colonial vermetids. The final dataset consists of 99 relative sea-level index points and 12
limiting points from the last 4000 a. The temporal distribution of the index points is uneven; Israel has
only four index points before 2000 a BP. We apply an Errors-In-Variables Integrated Gaussian Process
(EIV IGP) to the index points to model the evolution of RSL. Results show RSL in Israel rose
from �0.8 ± 0.5m at ~2750 a BP (Iron Age) to 0.0 ± 0.1m by ~1850 a BP (Roman period) at 0.8 mm/a, and
continued rising to 0.1± 0.1 m until ~1600 a BP (Byzantine Period). RSL then fell to �0.3± 0.1 m by 0.5
mm/a until ~650 a BP (Late Arab period), before returning to present levels at a rate of 0.4 mm/a. The re-
assessed Israeli record supports centennial-scale RSL fluctuations during the last 3000 a BP, although the
magnitude of the RSL fall during the last 2000 a BP is 50% less. The new Israel RSL record demonstrates
correspondence with regional climate proxies. This quality-controlled Israeli RSL dataset can serve as a
reference for comparisons with other sea-level records from the Eastern Mediterranean.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In the Eastern Mediterranean, coastal and submerged archaeo-
logical remains are widely used to reconstruct late Holocene rela-
tive sea level (RSL) (e.g. Flemming et al., 1986; Pirazzoli, 1987; Sivan
et al., 2001). Sea-level indicators include fishponds (Auriemma and
Solinas, 2009; Evelpidou et al., 2012), harbour structures such as
quays (Leatham and Hood, 1958), submerged prehistoric settle-
ments (Galili et al., 1988) and coastal wells (Nir, 1997; Sivan et al.,
2004; Vunsh et al., 2018).

Archaeological indicators, however, do not directly estimate
).
past RSL. Instead, the function of a measured architectural remain
and its relationship to RSL at time of construction must be evalu-
ated with variables that are specific to the type of archaeological
remain, such as the draughts of the ships using a stone pier
(Auriemma and Solinas, 2009) or the local water table where a
coastal well was dug (Vunsh et al., 2018). The relationship between
the archaeological remains and RSL is known as the functional
height (Morhange and Marriner, 2015). The functional height has
vertical uncertainties related to the spatial location, time period,
and archaeological context. The functional height and its un-
certainties are analogous to the indicative meaning described by
other researchers (Shennan, 1986; van de Plassche, 1986; Horton
et al., 2000; Shennan et al., 2015), which has a reference water
level that defines the relation of a sea-level indicator to a

mailto:dsilas@campus.haifa.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1016/j.quascirev.2019.02.021&domain=pdf
www.sciencedirect.com/science/journal/02773791
http://www.elsevier.com/locate/quascirev
https://doi.org/10.1016/j.quascirev.2019.02.021
https://doi.org/10.1016/j.quascirev.2019.02.021
https://doi.org/10.1016/j.quascirev.2019.02.021
Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight

Gilles
Highlight



S. Dean et al. / Quaternary Science Reviews 210 (2019) 125e135126
contemporaneous tide level (Shennan, 1986), such as mean high
water spring tides (MHWS), and the indicative range, which is the
elevation range occupied by a sea-level indicator. The functional
height and its uncertainty can, therefore, be used to reconstruct RSL
to produce a sea-level index point, which defines RSL at a point in
time and space (Engelhart et al., 2011; Shennan et al., 2015; Vacchi
et al., 2016). The archaeological remains can also be used as an
upper or lower limit to sea level, producing terrestrial or marine
limiting points, respectively (Shennan and Horton, 2002; Engelhart
and Horton, 2012).

In Israel, archaeological remains have been used to reconstruct
centennial-scale sea-level fluctuations in the late Holocene (Sivan
et al., 2001, 2004; Toker et al., 2012). For the last 2000 a BP, Sivan
et al. (2004) indicated that RSL was ~0.2m above present at 1500
a BP, followed by a fall of at least 0.5m from 1500e800 a BP (Sivan
et al., 2004; Toker et al., 2012). Some archaeological indicators,
however, were derived from older studies where the methods to
determine functional heights, dates, and uncertainties were
inconsistent. Furthermore, additional metadata necessary to
reconstruct the vertical and age uncertainties for index points and
limiting data (such as tidal range uncertainties and measurement
uncertainties) were not considered in the calculation of overall
uncertainties.

Here, we produce a dataset of Israeli archaeological indicators
mainly from the last 2000 a and carefully assess their functional
heights, dating and associated uncertainties. The dataset has been
constructed following the protocol described by the International
Geoscience Programme (IGCP) projects 61, 200, 495, 588 and 639
(e.g., Preuss, 1979; van de Plassche, 1982; Gehrels and Long, 2007;
Horton et al., 2009; Shennan et al., 2015). We then apply a Bayesian
Errors-In-Variables Integrated Gaussian Process (EIV-IGP) model to
reconstruct the evolution of RSL through time to compare it with
regional climate proxies (e.g., Roberts et al., 2012; Izdebski et al.,
2016; Marriner et al., 2017). The resulting RSL dataset consists of
99 index points (including 26 Dendropoma petraeum indicators)
and 12 limiting points.

2. Regional setting

The coast of Israel is situated in the passive margins of the Sinai
sub-plate of the African plate and it is bordered in the east by the
Dead Sea Transform Fault, the continuation of the Red Sea that was
already active in the late Oligocene and early Miocene (24e19Ma
BP), while to the west it is bordered by the Gulf of Suez (Gvirtzman
and Steinberg, 2012). To the north, at the foot of the present-day
continental slope, it is bordered by the Continental Margin Fault
Zone (Gvirtzman and Steinberg, 2012). The Continental Margin
Fault Zone was active in the Oligocene when the motion of Arabia
had already started to drift apart from Africa. During this time the
Suez Rift and the Continental Margin Fault Zone were abandoned
and the plate motion moved inland to the Dead Sea Transform
(Gvirtzman et al., 2008). The period of the Africa-Arabia breakup
and the continental margin reactivation differs from the passive
situation of the Israel-Sinai continental margin witnessed in the
uppermost stage of the Miocene and the Pliocene to Pleistocene
(Gvirtzman and Steinberg, 2012).

Analysis of geomorphology and sediments in the area show
little evidence of Holocene faulting or subsided/uplifted features
(Sneh, 2000), and seismic data indicates almost no activity along
the coast (Salamon et al., 2003). Analysis of historical tsunami
events showmost sources of activity to be from either the Dead Sea
transform fault in the east or the deep trenches south of Cyprus and
Crete in the west (Salamon et al., 2007).

The present coast and shallow shelf of Israel consists of Late
Pleistocene aeolianite calcareous sandstone known locally as
kurkar, which manifest in a series of parallel coastal ridges on and
offshore (Gvirtzman et al., 1983; Sivan et al., 1999; Mauz et al.,
2013). In troughs between these kurkar ridges and in river out-
lets, sandstone is often overlain with paleosols or clay, then finally
covered with Late-Holocene Nilotic sands (Sivan and Porat, 2004;
Roskin et al., 2015) that have been transported here to form the
modern coastline (Zviely et al., 2006; Shtienberg et al., 2016). The
gradually-sloping, shallow shelf of Israel (Almagor and Hall, 1984)
provides an environment where underwater archaeological re-
mains are accessible for study and often preserved under the Late-
Holocene Nilotic sand (Galili et al.,1988; Raban and Galili, 1985). For
earlier periods, submerged Neolithic to Chalcolithic (8150e5700 a
BP) settlements investigated by Galili et al. (2005) provide upper
limiting points for RSL in sites such as Atlit Yam and Kefar Samir
(Fig. 1) on the Carmel coast. Other sea-level studies based on
archaeology for the Late Holocene include coastal structures
(Flemming,1978; Raban and Galili, 1985), coastal water wells (Sivan
et al., 2004), and cisterns (Vunsh et al., 2018). Fish pools, flushing
channels, and sewage systems have also been used as indicators
(Sivan et al., 2001; Anzidei et al., 2011a; Toker et al., 2012).

3. Methods

3.1. Archaeological data collection: functional heights, dating, and
uncertainties

We gathered data from published archaeological remains in
Israel (Fig. 1) and calculated the functional heights for different
types of remains to produce index points or limiting data (Table 1).
When assumptions contributing to a particular remain's functional
height, date or uncertainties were unclear in a publication, we
excluded the remain from the dataset. When the functional height
and date of a remain were acceptable, but metadata (e.g., elevation
measurement uncertainty) was missing, we used default values
following the IGCP protocol (Shennan and Horton, 2002; Engelhart
and Horton, 2012).

We use the elevation uncertainty from the original publications
if specified, but if these were not stated then we use standard un-
certainties indicated by the special issue: a standard uncertainty of
±0.10m for DGPS; ±0.01m for total station; and ±0.03m for un-
specified instruments (T€ornqvist et al., 2004). All measurements
were made relative to mean sea level (MSL) or the Israel Land
Survey Datum (ILSD). We converted ISLD to local MSL following
Rosen et al. (2010), who showed that MSL was 0.08m above ILSD
during the epoch 1958e1984. A benchmark uncertainty of ±0.10m
was applied to all elevation measurements (Engelhart and Horton,
2012). The tidal datums are derived from the Admiralty tide tables
(UKHO, 2017) (Table 2) for two stations in Israel with identical re-
sults: Haifa (#1989) and Ashdod (#1990).

The chronologies of archaeological remains are often specified
in publications only by historical period, for example “Hellenistic”
or “Roman”. When an historical period is specified for a remain, we
assumed the date of the sea-level index point or limiting date to be
the median of the period, with the entire period representing a 2s
confidence interval. Indicators with problematic or low-resolution
dating (>±250 a) were excluded from the dataset. Because this
dataset incorporates a mix of calibrated 14C and archaeological
dates, all dates in this paper are written as years before present (AD
1950), for example, 650 a BP.

In order to verify the presence of centennial-scale sea-level
fluctuations, it is necessary to assess different types of archaeo-
logical indicators used in Israel. We address minor methodological
concerns with the archaeological remains. In this study, wells prove
the most useful archaeological remain in the Israeli dataset due to
the large number of excavated specimens. Index points from the



Fig. 1. Location map of the Israeli coast with an insert of the eastern Mediterranean:
black squares are sites with relative sea-level indicators in Israel that are mentioned in
the current study. Black circles are modern cities in Israel.

Table 1
Functional height (reference water level) and its uncertainty (indicative range) of archae

Indicator Type Description

Index points
Coastal water well Reference water level is the vertical distance between freshwa

level (D) (measured or modelled) (Sivan et al., 2004 Vunsh et
the height of the water jar (J) (0.35m; Sivan et al., 2004).

Pools Base of intake gate assumed to be below MTL to ensure wate
walkways above MTL (Lambeck et al., 2004; Evelpidou et al.,

Dendropoma petraeum Living distribution in Israel (Safriel, 1974, 1975; Sivan et al., 2
Terrestrial limiting points
Channels Top of channel above MTL (Sivan et al., 2001; Toker et al., 201
Structure Base Bottom of structure presumed to be above MTL (Sivan et al., 2
Watermill Base of mill outlet channel must be above MSL (Sivan et al., 2

2018).
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wells are more informative than limiting points provided by other
remains in the dataset.

3.1.1. Coastal water wells
Coastal water wells in Israel comprise a large dataset of sea-level

index points for the past 4000 a (Sivan et al., 2004; Vunsh et al.,
2018). Determining the functional height for wells used in Israel
depends on the assumption that the wells were operated all year
round, even at the end of summer when fresh water levels are
lower. The relationship between the freshwater table and saltwater
intrusion is sensitive close to the coastline (Sivan et al., 2004; Vunsh
et al., 2018). Therefore, if the well was dug too deep, not only did
excavation become extremely difficult, but the water could become
saline. In contrast, if the base was dug too shallow, the well would
be too low during summer to retrieve water from. Therefore, the
well would only be dug deep enough to allow the typical-sized jar
to draw water from it. The well's base elevation can therefore be
linked to sea level because the coastal freshwater table elevation
fluctuates with local sea-level changes and the top of the fresh-
water table remains above the sea-level by a certain vertical dis-
tance, as demonstrated by long-term instrument measurements
(Sivan et al., 2004). The equation for sea level is:

RSL¼ B - (D - J) (1)

where B is the well base elevation measured by DGPS, total station
or unspecified (m MSL). D represents the vertical distance between
the top of the freshwater column and sea level (m). D is measured
(Sivan et al., 2004) or modelled (Vunsh et al., 2018). J is the typical
height of the clay water jars used to draw water from the wells
(0.35± 0.05m) (Sivan et al., 2004). Consult the schematic in Fig. 2
for a visual representation. Table 3 contains an outline of the
sources of vertical uncertainthy applied to wells in the supplement.

Dating is reliable when the well is part of an extensively exca-
vated site, such as Caesarea (Sivan et al., 2004), but is less reliable
when based only on the indicative pottery sherds found in a well
itself, which could be from post-abandonment litter (Nir, 1997). The
dating of wells is limited to an archaeological period (sometimes
comprising a range of two to three centuries), which results in
many indicators having the same date range, inhibiting centennial
to decadal-scale analysis.

3.1.2. Structure bases and watermills
The base level of many structures is a common archaeological

remain and includes foundations and floor surfaces from structures
such as roads, houses, and walls. The structure bases usually only
provide terrestrial upper limiting points. The functional height and
its uncertainty are mean tidal level (MTL) and > MTL, respectively
ological remains and fixed biological indicators used in this dataset.

Functional Height
(reference water level)

Uncertainty
(indicative range)

ter table and sea
al., 2018) minus

[Water table vertical
distance e Water Jar]

[Water table
uncertainty þ water jar uncertainty]

r flux; or top of
2012).

MTL MHWS to MLWS

010). MTL MHWS to MLWS

2). MTL >MTL
001). MTL >MTL
004; Vunsh et al., MTL >MTL



Table 2
Tidal ranges adopted for this study using Admiralty Tables from two stations with identical values: Haifa (#1989) and Ashdod (#1990). Left column values are related to
chart datum calculated by the United Kingdom Hydrological Office (UKHO, 2017). Their heights relative to MSL are used as tidal datums in the current study.

Tidal Datum Height relative to Admiralty chart datum Height relative to MSL (supplement fields 42e51)

MHWS 0.6 0.35
MHWN 0.4 0.15
MTL 0.3 0.05
MSL 0.25 0
MLWN 0.1 �0.15
MLWS 0 �0.25
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(Table 1). The interpretation of structure bases can be problematic
and often relies on assumptions about how close they were built
above sea level, so we use MTL as the functional height. The sub-
merged surface excavated at Akko by Sharvit (2013), presumed to
be a floor associated with a harbour, provides a terrestrial upper
limiting point, but it lies somewhat below other index points of the
same age (Fig. 3).

Watermills in Israel provide terrestrial upper limiting points
because the measured elevation of the outlet channel is assumed to
be above MTL (Vunsh, 2014; Vunsh et al., 2018). Therefore, the
functional height of a watermill is MTL. The indicator's range is
>MTL.
3.1.3. Rock-carved pools, channels and quarries
Rock-carved structures are problematic and we excluded most

from the analysis because of unknown ages. For example, although
the quarries in Rosh Hanikra in Northern Israel would have been
near sea level for loading blocks onto ships (Auriemma and Solinas,
2009) no reliable dates were found, so they cannot be used as index
points.

RSL has been calculated using fishponds in Italy based on as-
sumptions that sea level could not have been below the pool base
or above the pool rim (Lambeck et al., 2004; Evelpidou et al., 2012).
In Israel, several rock-carved pools with ambiguous function height
exist, but offer no reliable means of dating and therefore are
rejected (Stanley, 1999; Dean, 2015). However, we define the
functional height as MTL for a fishpond at Achziv in Israel (Anzidei
et al., 2011a) with an indicative range of MHWS toMean LowWater
Spring tide (MLWS), which equates to± 0.30m for the coast of
Fig. 2. A schematic figure of the coastal wells, showing the relationship between well base a
the vertical distance between the top of the freshwater table and RSL as measured in modern
height of the jar used to draw water from the well and therefore also the height of water
Israel (UKHO, 2017), based on its well documented function and a
cemented artefact used to establish a Roman date (Ratzlaff et al.,
2012).
3.2. Fixed biological indicators

In the south and east Mediterranean, Dendropoma petraeum is a
colonial vermetid that inhabits inter-tidal rocky shorelines close to
mean sea level (MSL), and can provide sea-level index points
(Laborel and Laborel-Deguen, 1994; Laborel and Laborel-Deguen,
1996; Morhange et al., 2006). Along the coast of Israel they were
first studied by Safriel (1974, 1975) and later by Sivan et al. (2010).
The biological study of Safriel (1975) found a habitable range of
Dendropoma petraeum from “slightly above MSL” down to low
water springs, with living organisms often found above sea level.
We therefore use a referencewater level of MTLwith a conservative
indicative range of MHWS and MLWS.
3.3. Reconstruction of relative sea level

RSL for each index point in the Israel dataset was calculated
using the following equation:

RSL¼ E � FH (or RWL) (2)

where E is the measured sample elevation of the archaeological
remain or sea-level indicator (field 38 in the supplementary dataset),
and FH is the functional height of the remain, referred to as the
reference water level (RWL) in the supplementary dataset (field 57).
nd palaeo sea level. B represents the measured elevation of the well base. D represents
times, assumed to be the same for the last 2e3 thousand years. J represents the typical

in the well.



Table 3
Components of uncertainties for coastal well archaeological remains. Column 3 lists the field in the supplementary dataset where the value(s) are placed.

Source of uncertainty Typical values in m (±) Field # in supplement dataset

Tidal uncertainty 0.30m 28
Benchmark Uncertainty 0.10m 32
Measurement elevation If original author has not specified uncertainty: 0.01m if

with total station, 0.10m if DGPS, 0.03m if unspecified
method (standard uncertainties for special issue)

30 or 31

Measured water table vertical distance 0.1m or 0.14m (or other value specified by original author) Included in 58, when applicable
Modelled water table vertical distance Varies with distance, derived from 2sigma of observed

modern well bases at specified distance range from
coastline (between 0.1m and 0.6m)

Included in 58, when applicable

Size variability of water drawing vessel 0.05m Included in 58

Fig. 3. Israeli relative sea-level index points with 2s ellipses. Horizontal bars with
down-pointing arrows indicate terrestrial upper limiting points (relative sea level
maxima).
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Each index point in the dataset has a unique vertical uncertainty
estimated from the uncertainty of the archaeological remain (i.e.,
the indicative range) and a variety of factors inherent in the
collection and processing of archaeological remains for sea-level
research (e.g., measurement uncertainty, water level uncertainty
due to waves, tides; see Table 3 for those applied to wells). Total
uncertainty (2s) for each sample (U) is estimated from the root of
the sum of the squares of each uncertainty factor, using the
expression:

U ¼
�
u21 þ u22 þ ,,,þ u2n

�1=2
(3)

where u1 … un are individual sources of uncertainties for the
archaeological remain of fixed biological indicator, including the
uncertainty of the functional height.

We display the RSL data as individual points with uncertainties
using the R software environment (Lemon, 2006; R Core Team,
2015). Following Hijma et al. (2015), ellipses are used to indicate
sea-level index points' chronological and vertical uncertainties, and
horizontal bars with downwards-pointing arrows are used to
represent terrestrial limiting points. The width of the bar indicates
the chronological uncertainty and the length of the vertical
downwards-pointing arrow indicates the range of vertical uncer-
tainty associated with the constraint's elevation.

We performed statistical analysis only on the index points from
the dataset; all limiting points are excluded. This EIV-IGP model
(Cahill et al., 2015) takes an error-prone, unevenly distributed time
series of index points as input and produces estimates of RSL and
rates of RSL change through time. The model uses a Gaussian
process (Williams and Rasmussen, 1996) specified though a mean
function (set to zero) and an exponential covariance function to
describe the evolution of the rates of RSL change throughout the
reconstruction period. The index points are then modelled as the
integral of the Gaussian process plus measured and estimated
vertical uncertainty. Age uncertainties are accounted for by the EIV-
IGP framework (Dey et al., 2000). Detailed explanation of this
technique can be found in Cahill et al. (2015).
3.4. Present-day GIA rates along the coast of Israel

GIA computationswere performed using an improved version of
the Sea Level Equation solver SELEN of Spada and Stocchi (2007), in
which we take into account the migration of shorelines, the tran-
sition between grounded and floating ice during deglaciation and
the rotational feedback on RSL change (Milne and Mitrovica, 1998).
The program has been successfully benchmarked by Martinec et al.
(2018). In our GIA simulation, we have implemented the ice sheet
chronology and viscosity profile of the model ICE-6G (VM5a) of
Peltier et al. (2015), solving the Sea Level Equation by the pseudo-
spectral method on a grid with a spacing of ~20 km, equivalent to
harmonic degree lmax¼ 512.
4. Results

4.1. Relative sea-level reconstructions

We first collected 142 archaeological remains and sea-level in-
dicators, but only 111 had adequate functional heights and dating
information (see supplementary dataset). This included 99 index
points (73 archaeological and 26 biological) and 12 terrestrial upper
limiting points (Figs. 3 and 4). See Fig. 1 for locations. The database
includes:

� Coastal wells from several Bronze/Iron Age settlements and
wells along the Israeli coast (Sivan et al., 2001; Sharon and
Gilboa, 2013);

� A large collection of wells from Caesarea from the last 2000 a BP.
(Sivan et al., 2004), and from Akko, Jaffa, Yavne-Yam and
Ashdod-Yam (Vunsh et al., 2018);



Fig. 4. Israeli relative sea-level index points with 2s ellipses subdivided into three
different sea-level indicators: Coastal water wells (black); Rock-carved pool (blue); and
the biological indicator; the Dendropoma petraeum (red). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. Statistical regression of relative sea level for Israel. The Error-In-Variables in-
tegrated Gaussian Process (EIV-IGP) regression of relative sea level derived from Israeli
index points is shown (dotted line is the median; Inner contour for 1s; outer contour
for 2s).

4

S. Dean et al. / Quaternary Science Reviews 210 (2019) 125e135130
� A Roman water channel/fishpond at Achziv (Ratzlaff et al.,
2012);

� An assortment of wells, channels, ponds, and tunnels from Akko
from the last 2000 a BP (Toker et al., 2012; Vunsh, 2014; Vunsh
et al., 2018);

� A Hellenistic harbour installation from the same city (Sharvit,
2013);

� 26 cores of Dendropoma petraeum colonial vermetids from
Northern Israel (Sivan et al., 2010; Sisma-Ventura et al., 2014).
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Fig. 6. Rates of relative sea-level change in Israel as derived from the Error-In-
Variables integrated Gaussian Process (EIV-IGP). Dotted line is median rate in mm/
yr, with 1s and 2s envelopes.
4.2. Statistical analysis of the relative sea-level reconstructions

We combined all the data (99 index points, and 12 limiting
points) from ~175 km of the Israel coastline during the past 4000 a,
and re-assess Israeli index points using an EIV-IGP model produc-
ing estimates of RSL (Fig. 5) and rates of RSL change (Fig. 6).

The uncertainty of the reconstructed RSL before 2000 a BP is
greater (Fig. 5) due to the limited number of index points (four out
of 99). At ~4000 a BP, the EIV-IGP model indicates an RSL
of�0.9± 0.5m rising by ~0.4mm/a until about 3400 a BPwhen RSL
is �0.7± 1.0 m. RSL subsequently falls at �0.2 mm/a to a low-stand
of �0.8± 0.5m at ~2800 a BP (Iron Age). RSL subsequently in-
creases at ~0.8 mm/a to 0± 0.1m at ~1850 a BP (Roman Period),
then falls at �0.5 mm/a until it reaches �0.3± 0.1m at 650 a BP
(Late Arab Period), before returning towards present level at ~ 0.4
mm/a.

5. Discussion

Global datasets for the last 2000 a BP indicate a variety of RSL
trends because key driving processes, such as GIA and tectonics, are
spatially variable and cause RSL change to vary in rate and
magnitude among regions, sometimes with small-scale fluctua-
tions when the record is continuous (Horton et al., 2018). Statistical
analysis (Kopp et al., 2016) of global records from the last 3000 a BP
(including the previous Israeli coastal well data) shows small
fluctuations in global mean sea level from 1700e1000 a BP with
lows between 800 and 600 a BP, which corresponds to the record
presented in this current study.
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5.1. The Israel relative sea-level record and glacial isostatic
adjustment

The coast of Israel is located ~3000 km from the major centres of
glaciation, therefore the ice-induced component of the GIA signal
reduces in magnitude and so the ice equivalent meltwater
(~eustatic) signal becomes dominant (Milne et al., 2005; Khan et al.,
2015). The smaller amplitude GIA signal associated with ocean
loading and GIA-induced perturbations to the Earth's rotation
vector also becomemore evident (e.g. Clark et al., 1978; Milne et al.,
2005). In Israel, the “Earth” GIA model (Sivan et al., 2001, 2004;
Lambeck and Purcell, 2005) shows RSL rising up to present eleva-
tion throughout the Holocene. In contrast, the ICE-5G (Peltier,
2004; Toker et al., 2012) predicts RSL falling from 0.5m above
present levels at 4000 a BP. Both models show low GIA rates of RSL
change: < 0.2 mm/a for the Holocene in Earth (Sivan et al., 2001);
and 0.15 mm/a during the last 1000 a for the ICE-5G (Toker et al.,
2012).

Fig. 7 shows the present-day rate of RSL change in the Eastern
Mediterranean region and Israel, according to our predictions using
SELEN (Spada and Stocchi, 2007; Martinec et al., 2018) and the ICE-
6G (VM5a) GIAmodel (Peltier et al., 2015). Due to the slow response
of the solid Earth, these GIA rates can be considered as constant on
time scales of hundreds of years to a few millennia (e.g., Spada,
2017). Along the Israel coast, the total RSL variation due to GIA
has been ~0.10m during the last 1000 years, with negligible dif-
ferences (<0.05m) among north central and southern regions
where the index points are recovered (i.e., Yavne Yam, Jaffa, Cae-
sarea and Akko), because of the very long spatial wavelength of the
GIA response. A constant GIA response along the coast of Israel is
supported by previous GIA models characterised by different
deglaciation chronologies, spatial resolutions and rheological
parameterisations (see e.g., Sivan et al., 2001; Stocchi and Spada,
2009; Roy and Peltier, 2018).

The relatively minimal differences in GIA rates along the Israeli
coastline are supported by the subdivision of the database into
Fig. 7. Present-day rates of relative sea-level, in mm/year change along the coasts of Israel ac
program (Spada and Stocchi, 2007). These rates can be considered near-constant over the sca
Northern and Southern Israel.
three regions (Fig. 8a, b, c). Although, the vast majority of the index
points are from the central Israeli coast (Fig. 8b), specifically water
wells in Caesarea (Sivan et al., 2004), the difference among regions
(Fig. 8d) is small compared to the uncertainties of the index points.
Furthermore, the combined RSL record from Israel has similarities
with other regional studies. For example, the Israel record suggests
RSL was 0.0± 0.1m at 1850 a BP (Roman period), which is near
identical to RSL at the same time of 0.1± 0.1 m recorded by Anzidei
et al. (2011a) for Israel, and 0.2± 0.5m in Tunisia and Libya (Anzidei
et al., 2011b).

5.2. The Israel relative sea-level record and a meltwater signal

The changes in RSL in Israel in the absence of major tectonic and
isostatic processes could suggest an ice equivalent meltwater input.
Previous GIA modelling studies imply that the dominant ice
equivalent meltwater signal has been a gradual multi-meter rise
since 7000 a BP, likely driven by the slow response of the cryo-
sphere to the deglacial warming, although there are significant
differences between GIA models. The ICE-5G (Peltier, 2004; Peltier
and Fairbanks, 2006; Toscano et al., 2011) and the ICE-6G (Peltier
et al., 2015) models, respectively, estimate a rise in GMSL be-
tween 7000 and 4000 a BP of ~4m (ICE-5G) and ~2m (ICE-6G),
with <0.05m change between 4000 a BP and the Industrial Era.
Lambeck et al. (2014) draw a markedly different conclusion, with
~5m of rise between 7000 and 4000 a BP, then an additional
~0.80m between 4000 and 2000 a BP, and <0.10m between 2000 a
BP and the Industrial Era. GIA models of the total magnitude of the
7000e4000 a BP ice equivalent meltwater input vary by a factor of
~2.5, and between 4000e2000 a BP they vary by an order of
magnitude.

The centennial-scale oscillations (Fig. 5) might be attributed to
ice equivalent meltwater inputs from different sources, remote or
regional, that create temporally variable patterns and magnitude
changes (Mitrovica et al., 2001; Gehrels et al., 2011; Toker et al.,
2012). Greenland ice cores show a pronounced warm period from
cording to the ICE-6G (VM5a) GIA model (Peltier et al., 2015) obtained using the SELEN
le of hundreds to thousands of years. The map indicates negligible differences between



Fig. 8. Israeli sea-level index points with 2s ellipses are subdivided into the three regions. These regions are presented separately as north (a), central (b), and south (c), and
together (d). Location map of the Israel coastline with an insert of the eastern Mediterranean is shown.
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2000 to 1000 a BP, then neoglacial cooling during the Medieval
Climate Anomaly (MCA) and warmer conditions during the Little
Ice Age (LIA) (Dahl-Jensen et al., 1998). Roberts et al. (2012) place
the MCA at 950e650 a BP, and the LIA from 550e50 a BP. If
Greenland ice sheet mass changed significantly during these
climate phases, it should have caused corresponding changes in RSL
(Long et al., 2009). TheMCA has not been unequivocally established
in Antarctic research (Broecker, 2001; Mann and Jones, 2003;
Bentley, 2010), but there is some evidence of a warm event occur-
ring in the Antarctic Peninsula at approximately the same time as
the MCA. Domack et al. (2003) interpreted the record from Lalle-
mand Fjord showing an increased productivity during the MCA and
reported an MCA signal from a short core in the Andvord drift
terminating at about 650 a BP. Khim et al. (2002) analysed a marine
core close to the western Antarctic Peninsula, which they inter-
preted as a signal of warmer surface water temperatures between
700e500 a BP, at the time when our record shows a low oscillation
of RSL.

5.3. The Israel relative sea-level record and the Mediterranean
climate during the last three thousand years

In the Mediterranean, Izdebski et al. (2016) use eastern Medi-
terranean environmental, archaeological and historical data to
reconstruct trends in precipitation in the first millennium AD
(Fig. 9b). Roberts et al. (2012) discuss the Medieval Climate
Anomaly (MCA) and Little Ice Age (LIA) in the second millennium
AD by identifying fluctuations betweenwetter/drier periods for the
eastern Mediterranean using salinity and lake-level records
(Fig. 9c). Roberts et al. (2012) suggest that a climate seesaw pattern
operates between the eastern and western Mediterranean; when
dry conditions existed in thewest during theMCA, records from the
east show awet MCA. The dry MCA in the west has been connected
(Trouet et al., 2009) with consistently positive North Atlantic Os-
cillations (NAO) that produced greater atmospheric pressure in the
west Mediterranean, but as Roberts et al. (2012) point out, this
cannot be applied to the east, which operates under inverse con-
ditions likely dictated by a mix of other factors influencing our RSL
records. This inference is supported by Izdebski et al. (2016), who
used environmental, archaeological and historical data to recon-
struct trends in precipitation in the first millennium AD. There is no
correspondence between the wet/dry periods in the eastern Med-
iterranean and the single model of relatively high sea levels in Israel
at ~1500 a BP (Fig. 9a and b).

Toker et al. (2012) suggested a positive NAO phase affecting the
temperature and riverine freshwater flux in the whole Mediterra-
nean that coincided with negative Southern Oscillation Index (SOI),
and affected the Nile outflow, which is the only freshwater source
in the south-eastern Mediterranean. Research on Nile flow
(Kondrashov et al., 2005) shows 256-year cyclic patterns, and the
reduced freshwater fluxes could have been the cause for the low sea
levels in the Levant basin due to the high NAO status, which was
further enhanced by a persistent negative ENSO affecting the Nile
outflow (Toker et al., 2012).



Fig. 9. Israel RSL record with regional climate data: (a) Error-In-Variables integrated
Gaussian Process (EIV-IGP) regression of Israeli relative sea-level index points only:
Inner contour for 1s, outer contour for 2s. (b) Dry and wet periods between 1000 and
2000 a BP according to Izdebski et al. (2016). (c) Medieval Climate Anomaly (MCA) and
Little Ice age (LIA) wet and dry periods in the eastern Mediterranean following Roberts
et al. (2012). (d) Step-line graphs Tsunami/storm frequency with higher values indi-
cating stormier climate (Marriner et al., 2017). (e) Speleothem d18O data from Turkey
(Badertscher et al., 2011).
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Marriner et al. (2017) use a meta-analysis of several regional
climate proxies that also provide a strong indication of fluctuating
environmental conditions that correlate with our reconstructed
RSL record from Israel. This includes tsunami and/or storm events
from the entire Mediterranean (although most data come from the
central Mediterranean) for the last 2000 a BP. Periods of high
stormy frequency correlate (r¼ 0.79) with high sea levels in Israel,
while low storm frequency corresponds with low RSL (Fig. 9d).
Some correlation is also evident with several other proxies such as
speleothems from Turkey (Badertscher et al., 2011), which show at
least a similar period to our observed sea-level fluctuations
(Fig. 9e). The proxies of Marriner et al. (2017) and Badertscher et al.
(2011) are indirect indications of climate that measure storminess
or moisture, so establishing causal relationships and driving
mechanisms with regard to RSL fluctuations remains a target for
further investigation.
6. Conclusions

Re-assessment of previous data is essential in any RSL record,
especially when archaeological indicators are used as index points
intended for comparison with other types of RSL data. Our study in
Israel identifies methodological concerns with most types of
archaeological remains, but presents them for the first time with
conservative, consistent uncertainties. From the archaeological in-
dicators, coastal water wells prove to be the most viable archaeo-
logical proxy in Israel since they provide an uninterrupted, plentiful
dataset for the last 2000 a BP.

The application of the standardized protocol described by the
IGCP enables the production of a regional dataset using multiple
sea-level indicators. This continuous, reliable dataset from Israel is
analysed for the first time using an EIV-IGP model and presented in
a format used by the larger sea-level community with extensive
metadata and uncertainty calculation. The Israel data does show
RSL oscillations from �0.8± 0.5m at 2750 a BP (Iron Age) to
0.1± 0.1m above present at 1600 a BP (Byzantine Period), with a
fall to �0.3± 0.1m at 650 a BP (Late Arab Period). Since this record
is from a tectonically stable coast with relatively minor GIA rates, it
can serve as a reference for other areas of the eastern Mediterra-
nean. Our results exhibit a degree of correlation with other climate
proxies from the Mediterranean, but better dating resolution and
geographically distributed sea-level indicators are still required
before the relationship and driving mechanism between climate
and sea level becomes clear.
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