OCE421 Marine Structure Designs Lecture #18 (Wave Forces on Vertical Breakwater – Goda's Method)

Pressure Distribution at Wall

Minikin's equation

For caisson and other vertical structures

maximum dynamic pressure:

$$p_m = 101 \gamma \frac{H_b}{L_{d_1}} \frac{d_s}{d_1} (d_1 + d_s)$$

 $p_m =$ maximum dynamic pressure

- $H_b =$ breaker height
- $d_s =$ water depth at structure toe

 d_1 = water depth at one wave length in front of the wall L_{d_1} = wave length at d_1

Resultant Force / Overturning Moment

resultant forces (due to dynamic pressure)

Resultant Force/Overturning Moment (II)

resultant forces (due to hydrostatic pressure)

$$R_s = \frac{\gamma (d_s + H_b/2)^2}{2}$$

overturning moments (due to hydrostatic pressure)

Goda's Method

- The method is applicable to both breaking and non-breaking waves
- Combined hydrostatic and dynamic pressures are assumed, maximum at the SWL and linearly decrease above and below the SWL.

Goda: Pressure Profile

 $\gamma =$ unit weight of water

 $H_{\rm max} =$ Goda's design wave height

 $\alpha_1, \alpha_2, \alpha_3 =$ coefficients to be determined

 $\beta=$ angle between direction of wave approach and normal to breakwater

Definition: angle β

Goda's H_s within the surf zone

Goda's formulas for significant wave height in the surf zone:

$$H_{s} = \begin{cases} K_{s}H'_{o} & :h/L_{o} \geq 0.2\\ \min\{(\beta_{o}H'_{o} + \beta_{1}h), \beta_{\max}H'_{o}, K_{s}H'_{o}\} & :h/L_{o} < 0.2 \end{cases}$$
$$\beta_{o} = 0.028(H'_{o}/L_{o})^{-0.38} \exp[20\tan^{1.5}\theta]\\ \beta_{1} = 0.52 \exp[4.2\tan\theta]\\ \beta_{\max} = \max\{0.92, 0.32(H'_{o}/L_{o})^{-0.29} \exp[2.4\tan\theta]\} \end{cases}$$

 $L_o =$ deep water wave length

 $K_s =$ shoaling coefficient

 $\tan \theta =$ near-shore slope

Goda's H_{max} within the surf zone

Goda's formulas for maximum wave height in the surf zone:

$$H_{\max} \equiv H_{1/250} = \begin{cases} 1.8K_s H'_o & :h/L_o \ge 0.2\\ \min\{(\beta_o^* H'_o + \beta_1^* h), \beta_{\max}^* H'_o, 1.8K_s H'_o\} & :h/L_o < 0.2 \end{cases}$$
$$\beta_o^* = 0.052(H'_o/L_o)^{-0.38} \exp[20\tan^{1.5}\theta] \\ \beta_1^* = 0.63 \exp[3.8\tan\theta] \\ \beta_{\max}^* = \max\{1.65, 0.53(H'_o/L_o)^{-0.29} \exp[2.4\tan\theta]\} \end{cases}$$

Goda: Design Wave Height

1. estimate H_s at h

Determine Design Wave Height

 $h/L_o \ge 0.2 ?$

estimate H_s at h (location of the breakwater) determine d_b : $d_b = 5H_s \tan \theta + h$ $d_b/L_o \ge 0.2$? estimate H_{max} at d_b (breaking depth)

Formulas to calculate α_i

$$p_1 = \frac{\gamma}{2} (1 + \cos\beta)(\alpha_1 + \alpha_2 \cos^2\beta) H_{\text{max}} \qquad p_3 = \alpha_3 p_1$$

$$\alpha_1 = 0.6 + \frac{1}{2} \left[\frac{4\pi h/L}{\sinh(4\pi h/L)} \right]^2 \qquad (L: \text{wave length at } h)$$

$$\alpha_2 = \min \left\{ \frac{d_b - d}{3d_b} \left(\frac{H_{\text{max}}}{d} \right)^2, \frac{2d}{H_{\text{max}}} \right\}$$

$$\alpha_3 = 1 - \frac{h'}{h} \left[1 - \frac{1}{\cosh(2\pi h/L)} \right]$$

 $d_b = 5H_s \tan \theta + h$ (H_s : significant wave height at h)

Evaluation on Minikin / Goda Formulas

• The reliability of the calculation method for the wave pressure on a vertical breakwater is judged by the accuracy of the prediction of **breakwater stability**.

Prototype Structures against Sliding

Safety Factor against Sliding (figure)

Safety Factor against Sliding

S.F.
$$= \frac{\mu(W - U)}{P}$$

W = weight in still water (i.e. weight in air - buoyancy)

U = uplift force due to the presence of the wave

$$P =$$
 total horizontal force

 $\mu =$ coefficient of friction (between the upright section and the foundation)

Safety against Overturning (figure)

Safety Factor against Overturning

$$S.F. = \frac{W \cdot t - M_U}{M_P}$$

- M_U = moment about the heel due to U (uplift force)
- $M_P =$ moment about the heel due to P (horizontal force)
- t = horizontal distance between c.o.g. and the heel of the upright section