

Intuitive operation and pilot training when using marine azimuthing control devices

Report Title:

Deliverable 4.5:

Manoeuvring with podded manned models

No part of this document may be reproduced or transmitted in any form or by any means, nor stored in any information retrieval system of any kind, nor communicated to any other person without the specific written permission of the AZIPILOT Project Steering Committee.

EXECUTIVE SUMMARY

The present report contains the main results of Task 4.5 of the AZIPILOT Project. Work Package 4 of the project is specifically aimed at maritime pilots, ship operators/managers, pilot associations and end users. More generally it focuses on subjects relating to operational practice with azimuthing control devices (ACDs).

The main aim of WP4 is to collate, review and audit available material relating to operational aspects of ACDs when manoeuvring ships in pilotage waters. The outcomes of the work will be used to improve current techniques and tools.

The objective of this task is to summarise knowledge gathered in other tasks into an accessible form and, in doing so, propose practical solutions for shiphandling. This task aims to illustrate typical manoeuvres both in normal and emergency scenarios. The task mainly consisted in carrying out a number of illustrative tracks with a podded manned model. Both turning circles and crash stops were carried out and are reported here in full detail.

The conclusions to be drawn from the manoeuvring exercise with the podded manned model are as follows:

- For turning circles:
 - The effect of twin pods on the turning diameter is similar to that of a rudder with twice the angle;
 - In case of failure of one pod, the turning diameter is less affected when the outside pod is still working.
- For crash stops:
 - The shortest stop is obtained when turning both pods 180° inboard at full positive rpm (the so-called "Pod way stop");
 - Turning both pods 180° outboard is slightly less efficient and increases mechanical stresses;
 - The "Transverse Arrest stop" (turning both pods 90° inboard) is even less efficient and increases mechanical stresses;
 - Other crash stop scenarios are inferior to the ones mentioned above, except for the Turning Stop, which can be used if sufficient lateral area is available.

Detailed results are provided in this report and will hopefully be useful for further mathematical and physical modelling.

The work summarised in this deliverable was conducted by Port Revel (Appendix 2).

EXI	ECUTIVE SUMMARY	3
1.	CONTRACTUAL TASK DESCRIPTION	4
2.	DESCRIPTION OF THE MODEL	5
1.	Manned models	5
2.	The lake	7
3.	The ships	8
4.	The Pods	8
3.	SCENARIOS AND TRACKS	11
1.	Series 1 - Normal operations: turning circles	11
2.	Series 2 - Emergency operations: crash stops	11
4.	RESULTS FOR TURNING CIRCLES	12
5.	RESULTS FOR STOPPING MANOEUVRES	13
6.	COMPARISON WITH EXISTING DATA	15
7.	REFERENCES	16
API	PENDIX 1 – PORT REVEL LAKE	17
API	PENDIX 2 – PORT REVEL TECHNICAL DOCUMENTATION	18
API	PENDIX 3 – AZIPILOT TRACKS ON THE PORT REVEL LAKE	19
API	PENDIX 4 – DETAILED RESULTS FOR TURNING CIRCLES	21
API	PENDIX 5 – DETAILED RESULTS FOR STOPPING MANOEUVRES	22

1. CONTRACTUAL TASK DESCRIPTION

Task 4.5	Encapsu	late knowledge using integration & evaluation e	xercise.
Start Month:	15	Duration (months):	27
Participating partners:	PRL		
Person-months:	2.5		

The aim of this task is to identify operational practice for pilots of ships equipped with azimuthing control devices, both in normal and emergency situations. The objective is to hold a dedicated project workshop (hosted by the task leader) to identify, with the help of expert maritime pilots, a number of normal and emergency scenarios and corresponding ship handling procedures. Existing information on the manoeuvring performance of ships equipped with azimuthing control devices will be gathered from other tasks. These other tasks are expected to yield a great deal of information regarding both theoretical and practical experience. However, it is recognised that very little information exists as yet for manned-model ships equipped with azimuthing control devices. The objective of the workshop is to summarise this knowledge into an accessible form, and in doing so propose practical solutions.

The task will serve to encapsulate the compiled knowledge through an integration and evaluation exercise. Specifically, the task will integrate the identified scenarios and corresponding ship handling procedures into the ongoing activities of the training centre. The project is thereby expected to illustrate the manoeuvres in order to disseminate knowledge by means of videos and pictures.

The task will culminate in a report describing and summarising the above integration and evaluation and will constitute one deliverable.

2. DESCRIPTION OF THE MODEL

The task mainly consisted in carrying out a number of illustrative tracks with a podded manned model. Both turning circles and crash stops were carried out and are reported here in full detail.

1. Manned models

Many research workers, hydraulics specialists and engineers have been using scale models for over a century, in particular in towing tanks. Manned models are small-scale models that can carry and be handled by at least one person on an open expanse of water. They must behave just like real ships, giving the shiphandler the same sensations. Physical conditions such as wind, currents, waves, water depths, channels and berths must be reproduced realistically (Appendix 2).

Manned models are used for research (e.g. ship behaviour), engineering (e.g. port layout) and training in shiphandling (e.g. maritime pilots, masters and officers).

They are usually at 1:25 scale.

Port Revel has chosen to apply the **physical similitude** law of William Froude (1810-1879) for its manned models. This means that gravity is considered to be preponderant over the other forces acting on the hull (viscosity, capillarity, cavitation, compressibility, etc.). The different aspects of similitude may thus be defined as follows:

Similitude of shape: The model has exactly the same geometric shape as the real ship. This means that all the dimensions of the real ship are divided by the same factor, the scale factor. The designers of Port Revel chose a scale of 1:25, so:

 $S_{(L)} = 25$

In this similitude, the proportions are kept (the ratios between the various dimensions of the ship are identical). This is also the case with the block coefficient. Furthermore, the angles are a length ratio, so they are also identical to the original ones. The scale factors of the areas and volumes are deduced from this, i.e.:

$$S^2_{(L)} = 25^2 = 625$$

$$S^{3}_{(L)} = 25^{3} = 15\ 625$$

Similitude of mass: The model used for shiphandling training must not only resemble the original but also move in the same way as the original when subjected to similar forces. Moreover, the density of the lake water is almost the same as that of sea water. Consequently, the scale factor for the mass and displacement is the same as that for the volumes, i.e.:

$$S_{(M)} = S^3_{(L)} = 25^3 = 15\ 625$$

Similitude of forces: If the external forces on the model are in similitude, like the shapes, masses and inertia, the model's movement will be in similitude. It can thus be shown that the forces must be at the same scale as the masses and weights, so:

$$S_{(F)} = S_{(M)} = 25^3 = 15\ 625$$

Similitude of time: In accordance with Froude's law, the time scale is the square root of the length scale, so:

 $S_{(T)} = S_{(L)}^{1/2} = sqrt(25) = 5$

Similitude of power: Similarly, it can be shown that:

$$S_{(P)} = S_{(L)}^{7/2} = 25^{7/2} = 78\ 125$$

To conclude, in choosing a scale of 1:25 for the lengths and complying with Froude's law, the engineers at Sogreah – Port Revel built models 25 times smaller and operating 5 times more slowly. However, since the distances are 25 times shorter, things occur 5 times faster. The ships are 78125 times less powerful.

Similitude of manoeuvres: While the models must be in correct physical similitude, this is not enough. Other factors can affect the correct reproduction of the manoeuvres, such as the field of vision, on-board equipment and wind.

- First, manoeuvres on a model require the same pilot's orders as those on a real ship. The only difference is that they are executed five times faster on the model, so there is no time to discuss them. In fact, the operating rate is such that the captain and helmsman swap roles every hour to avoid fatigue.
- The captain's position gives him a true field of vision from the bridge. He gives his orders to the helmsman, who is seated in front of him and operates the wheel and engine.
- Control panels show the usual information (engine speed, rudder angle, heading, log, wind speed and direction, chain shackles lowered). This information is shown in real-life values to help the trainee forget as much as possible that he is on a scale model.
- The ships are fitted with bow and stern thrusters and perfectly operational anchors. They behave like real ships from this point of view as well.
- Tugs are under the captain's orders via remote control, and are handled by a real tug captain.
- As far as wind is concerned, it should be recalled that, since the speed scale factor is 1 in 5, a wind of 10 knots on the lake is equivalent to a 50-knot squall in reality. Ripples on the surface of the water and the movement of leaves on the trees are therefore unreliable indicators. The wind and ship speeds displayed on the control panel are hence very important for trainees. However, the lake is situated in a forest in a region with little wind, so uncontrollable wind effects are minimised.

Nature is at work on scale models, with random effects that are similar to those of real-life situations. The unforeseeable nature of squalls, shallows, currents and waves calls for an immediate, appropriate reaction, without any repeat or automatic response ... and no "reset" switch.

For the same reason (natural phenomena), hydrodynamic effects are correctly reproduced on scale models and it is therefore unnecessary to transpose them in the form of complex equations. This gives a better simulation of hydrodynamic effects such as interactions between ships (for example in a canal), interactions between the ship and berth, small under-keel clearance (such as 10% of the ship's draught) and the use of anchor dredging in various operating situations.

The scale effect of wind on a manned model is well known, but this is also well known to be in no way detrimental to the use of manned models for serious and effective shiphandling training. Wind is a factor in the everyday life of pilots throughout the world. The design of our manned model lake is such that the wind element will vary in different parts of the lake. This allows a course to be structured in such a manner as to introduce wind as and when required. Extreme wind conditions are encountered in the real world. If they occur at a manned model centre, with care they can be used in various scenarios to demonstrate how well control can be maintained.

Experience of over 40 years has shown that students quickly learn how to control the models just as they do the real ships that they are used to manoeuvring.

Those who have trained on both claim that scale models are complementary to electronic simulators. While manoeuvres with currents, waves, tugs, anchors, bank effects, etc. are reproduced more accurately on scale models, numerical simulators are more realistic when it comes to the bridge environment and human factors.

2. The lake

Port Revel is located on a man-made lake of about 13 acres (5 ha) that has been remodelled in order to reproduce real sailing conditions (Appendix 1).

The lake is located near Grenoble (France), where the wind regime is very mild. Moreover, it is sheltered by a forest. Uncontrolled wind effects on ships are hence reduced to a minimum. At a 1:25 scale, the lake area represents a navigable zone measuring about 5 by 2 nautical miles, allowing several models to sail at the same time at normal manoeuvring speeds. It features deep, shallow and very shallow water areas (less than 10% under keel-clearance for certain ships).

The lake has the following permanent equipment and features:

a) the different types of moorings that exist in ports or near the coast:

- open wharves,
- solid quays,
- offshore platform structure,
- new Panama lock,
- single buoy mooring.

b) the different types of buoyed channel (deep water and shallow water) with different widths, and a length of ship canal (representing, for example, a bend of the Suez Canal),

c) a wave generator designed to produce waves of varying period and height (maximum about 6 m at full scale, or 24 cm for the models),

d) current generators able to produce currents of various directions with speeds up to 3 knots (at full scale),

e) a wind generator designed to reproduce a wind field of 20-30 knots (at full scale),

f) a "garage" (boat house) for shelter and maintenance of the models.

This equipment is supplemented by a number of leading marks on land, and an observation tower.

A very accurate track recording system is available: the position of 5 ships can be determined with an accuracy of 25 cm (10 inches) at full scale, anywhere on the lake. Ship positions and headings are sent to the base along with data on rudder angle, rpm, wind speed and direction, ship speed, etc.

Printouts of manoeuvres are provided and discussed with the participants at the end of each day.

All the tests were conducted with virtually no wind.

3. The ships

The ships are accurately constructed to conform to the principles of similitude and are fitted with indicators showing the ship's parameters. Information given by the indicators is at full scale.

The Port Revel fleet is at present made up of eleven manned models and three radio-controlled tractor tugs.

Seven of the manned models represent at scale real oil tankers or bulk carriers ranging from 17 000 to 400 000 dwt.

The eighth is a replica of the liquid natural gas (LNG) carrier "Ben Franklin" (125 000 m³). The ninth is a replica of a 4 400 TEU post-panamax container ship, the "CGM-Normandie". The tenth ship, introduced in 2009, is a model of the "CMA CGM Otello", a large 8 500 TEU container ship. The latest ship, introduced in 2010, is a "Q-Max", a large 265 000 m³ LNG carrier.

Most models are fitted with diesel motor and steam turbine, and the Normandie can be controlled from the front deck like a car carrier or a cruise ship, so that the fleet in fact reproduces over 20 different vessels.

One ship is fitted with an optional Becker rudder and another ship has a Schilling rudder. On two ships, it is possible to have the bridge forward.

All but one are fitted with a bow thruster. Most ships are fitted with bow and stern thrusters. All ships but one have fully operational anchors.

Several ships have variable draught.

Each model is designed so that the Master is at bridge level. He calls out his instructions to the "crew", i.e. the helmsman, who steers the ship and operates the engine room telegraph. An instrument panel gives continuous full-scale indications of propeller rpm, rudder angle, ship's heading and speed, and wind velocity and direction.

The sliding cover is positioned to correctly reproduce the effect of wind.

4. The Pods

The Normandie can be fitted with optional "pods" in order to reproduce the behaviour of a 900 ft cruise ship. This means that the ship can be fitted either with a conventional

rudder/propeller or with two pods. The pod parameters are taken from the Queen Mary 2, including the "Fast" and "Standard" manoeuvring modes with corresponding engine accelerations and decelerations, torque limitations, and steering limitations.

To make the shiphandling training centre even more attractive for ships' pilots and captains, it was decided in 2006 to introduce pod propulsion on one of its 1:25 scale models (see www.portrevel.com).

Pods have a considerable effect on the way a ship handles. At cruising speed, the diameter of the turning circle is greatly reduced, even though pods cannot rotate more than 35°, as is the case with a conventional rudder. In manoeuvring situations, the 360° rotation of the pods means that thrust can be created in any direction, including combinations in which one pod is operating fore and aft and the other at an angle of 90° ("T-Bone"), and combinations with bow thrusters, which enable the ship to move sideways ("crabbing").

It thus seems that there is considerable room for experimentation with this type of propulsion. At Port Revel, pod propulsion is optional; in other words, the ship may be fitted with pods to reproduce the behaviour of a 275 m cruise liner, or else fitted with conventional propulsion including a rudder and propeller to reproduce the behaviour of 4400 TEU container ships (the Normandie, formerly CMA-CGM). It is also possible to reproduce a ship with two propellers and a central rudder.

A specific training course was therefore set up for experienced pilots and captains who wish to discover the possibilities of pods in shiphandling. This course is obviously carried out without using a joystick but with the conventional Stork-Kwant controls identical to those on the QM2. The course covers such operations as:

- Docking and undocking with a current.
- Crabbing, with pods and bow thruster.
- Backing into a slip.
- Manoeuvring with a single pod (in the event of failure).
- Emergency stopping.

A course of this kind can also usefully involve the following:

- emergency operations with escort tugs,
- operations in the local conditions to which participants are accustomed.

The first two courses of this kind took place during the summer of 2006 with pilots from San Francisco, who returned home delighted with their experience at Port Revel. Most of them were at Port Revel for the fourth time in their career to perfect their skills.

The seven instructors at Port Revel were also extremely eager to discover the possibilities offered by pods, in particular for emergency manoeuvres. For example, they were able to crash stop a ship heading at 13.5 knots in one and a half times its length. A feat of this kind would probably cause a little breakage on board, but if it is going to save human life....

The container carrier Normandie converted into a 275 m cruise liner with the bridge to the bow.

One of the two 21.5 MW pods installed on the Normandie

Stork-Kwant control unit for operating pods

Crash stop by turning the ship. With an initial speed of 13.5 knots, the ship is stopped in 120 seconds, in an area equivalent to only 2.2×1.4 times its length.

3. SCENARIOS AND TRACKS

Both normal and emergency scenarios were considered.

1. Series 1 - Normal operations: turning circles

Since the model could be set either as a traditional single-screw container ship or as a twinpodded cruise ship, the two configurations were compared. The following turning circle exercises were performed:

- 1.1.1 Traditional single-propeller ship starboard turn with rudder at 40°,
- 1.1.2 Traditional single-propeller ship port turn with rudder at 40°,
- 1.2 Twin-podded ship, stb turn with 2 pods at 30° ,
- 1.3.1 Twin-podded ship, stb turn with stb pod at 35°,
- 1.3.2 Twin-podded ship, stb turn with port pod at 35°,
- 1.4 Twin-podded ship, stb turn with 2 pods at 20°,
- 1.5 Twin-podded ship, stb turn with 2 pods at 10°.

2. Series 2 - Emergency operations: crash stops

Several procedures are known for crash-stopping a podded ship. These were compared at an initial speed of 13.5 to 14 kn in the "Fast Mode" (i.e. without any rpm limitations), with the exception of tracks 2.0 and 2.5, which required too great a distance on the lake and were therefore carried out with an initial speed of 9.5 to 10 kn:

- 2.0 Propellers in line and stopped,
- 2.1 Reverse propellers to full negative rpm (= full astern),
- 2.2 Turn both pods 180° outboard with full positive rpm,
- 2.3 Turn both pods 180° inboard with full positive rpm (Pod way stop),
- 2.4 Turn both pods 90° inboard with full positive rpm (transverse arrest),
- 2.5.1 Turn both pods 90° inboard with propellers ordered at stop,
- 2.5.2 Turn both pods 90° outboard with propellers ordered at stop,
- 2.6 Turn both pods 60° outboard with propeller ordered at full negative rpm,

2.7 - Turn both pods 35° outboard with reduced rpm until speed is reduced to 8 kn, then turn both pods further to 180° with increased rpm,

2.8 - Reduce to 80 rpm, then turn pods 180° outboard, then at 11 kn reduce to 50 rpm, and at 8 kn reduce to 30 rpm (fast deceleration)

2.9 - Reduce to 80 rpm, then at 11 kn reduce to 50 rpm, and at 8 kn reduce to 30 rpm then turn pods 180° outboard (smooth deceleration)

2.10 - Turn port pod 45° outboard and the stb 135° inboard with full positive rpm,

4. **RESULTS FOR TURNING CIRCLES**

Track 1.1.1 - Traditional single-propeller ship starboard turn with rudder at 40°,

Track 1.1.2 - Traditional single-propeller ship port turn with rudder at 40°,

Track 1.2 - Twin-podded ship, stb turn with 2 pods at 30°,

Track 1.3.1 - Twin-podded ship, stb turn with stb pod at 35°,

Track 1.3.2 - Twin-podded ship, stb turn with port pod at 35°,

Track 1.4 - Twin-podded ship, stb turn with 2 pods at 20°,

Track 1.5 - Twin-podded ship, stb turn with 2 pods at 10°.

All tests were conducted with an initial speed of around 10 knots obtained with around 70 rpm on the pods (and 55 rpm on the traditional single propeller). It should be noted that turning circles in this series of tracks are defined by their "swept diameter", i.e. the largest area taken for the manoeuvre. All dimensions are related to the overall ship length "SL".

As a reference, the ship was used in her traditional single right-turning propeller mode to carry out a starboard turn and a port turn with 40° rudder angle. As expected, the port turn was slightly shorter (2.8 SL) than the starboard turn (3.4 SL) due to the propeller thrust.

The twin-podded ship was used for several turns with various pod angles, with the following resulting swept diameters:

- the stb turn with 2 pods at 30° gave a circle of 2.8 SL
- the stb turn with 2 pods at 20° gave a circle of 3.2 SL
- the stb turn with 2 pods at 10° gave a circle of 4.9 SL

If this is compared with the traditional ship with rudder at 40°, it can be seen that the podded ship gave a similar diameter of around 3.0 SL for a pod angle of around 25°. This is known as a "1 in 2" angle ratio between pod and rudder angles for similar turning circle diameters.

The twin-podded ship was also used for turns with only <u>one pod</u>, resulting in the following swept diameters:

- the stb turn with stb pod at 35° gave a circle of 3.9 SL
- the stb turn with port pod at 35° gave a circle of 2.4 SL

As expected, the shortest turn is obtained with the "outside" pod. This turn is indeed very short due to severe skidding of the ship stern.

5. **RESULTS FOR STOPPING MANOEUVRES**

Track 2.0 – Propellers in line and stopped,

Track 2.1 - Reverse propellers to full negative rpm (= full astern),

Track 2.2 - Turn both pods 180° outboard with full positive rpm,

Track 2.3 - Turn both pods 180° inboard with full positive rpm (Pod way stop),

Track 2.4 - Turn both pods 90° inboard with full positive rpm (transverse arrest),

Track 2.5.1 - Turn both pods 90° inboard with propellers ordered at stop,

Track 2.5.2 - Turn both pods 90° outboard with propellers ordered at stop,

Track 2.6 - Turn both pods 60° outboard with propellers ordered at full negative rpm,

Track 2.7 - Turn both pods 35° outboard with reduced rpm until speed is reduced to 8 kn, then turn both pods further to 180° with increased rpm,

Track 2.8 - Reduce to 80 rpm, then turn pods 180° outboard, then at 11 kn reduce to 50 rpm, and at 8 kn reduce to 30 rpm (fast deceleration),

Track 2.9 - Reduce to 80 rpm, then at 11 kn reduce to 50 rpm, and at 8 kn reduce to 30 rpm then turn pods 180° outboard (smooth deceleration),

Track 2.10 – Turn port pod 45° outboard and the stb 135° inboard with full positive rpm.

All tests were conducted with an initial speed of around 13.5 knots obtained with around 100 rpm on the pods (except the tests with stopped engine, which were conducted with an initial speed of around 10 knots). It is to be noted that stopping distances in this series of tracks are defined by their bow positions at the initiation of the manoeuvre and at full stop. The manoeuvres were initiated at a fixed alignment on the lake and all stopping manoeuvres were carried out in two directions in order to eliminate any possible wind effect. All dimensions are related to the overall ship length "SL".

As a reference, the propellers were simply ordered at stop, starting from an initial speed of around 10 knots as the lake was too short to cope with larger stopping distances:

- Propellers kept in line (0°) and stopped gave a distance of 4.1 SL
- Turning both pods 90° inboard with propellers ordered at stop gave a distance of 5.0 SL
- Turning both pods 90° outboard with propellers ordered at stop gave a distance of 5.0 SL

The first track led to a stopping distance of 4.1 SL ... with around 3 SL lateral transfer as control was gradually lost over the ship as speed reduced. The two tests with pods at 90° led to even larger distances with lateral transfer of around 2.5 SL.

The ship was than stopped in several ways (with an initial speed of around 13.5 knots):

- Reversing propeller to full negative rpm (= full astern) gave a distance of 3.0 SL
- Turning both pods 180° <u>outboard</u> with full positive rpm gave a distance of 2.3 SL
- Turning both pods 180° inboard with full positive rpm (Pod way stop) gave a distance of 2.1 SL

The last procedure was the shortest obtained for all the tests. The inboard turning of the pods was slightly better than the outboard turning of the pods, and both of them were much better than the traditional "full astern" order.

The "transverse arrest" stopping manoeuvre is well known to tug masters. It appears also to be quite efficient on podded ships (with an initial speed of around 13.5 knots):

• Turning both pods 90° inboard with full positive rpm gave a distance of 2.9 SL

However, the stopping distance of 2.9 SL found during this test is greater than the shortest distance of 2.1 SL obtained with 180° inboard turning of the pods at full positive rpm. The efficiency of this "transverse arrest" stopping method also explains why the "Pod way" stop with <u>inboard</u> turning of the pods mentioned earlier is more efficient than the one with <u>out</u>board turning of the pods.

The hydraulic effect of the transverse flow of water generated by the pods is shown by the two tests with propellers ordered at stop and leading to a stopping distance of 5.0 SL (with around 2.5 SL lateral transfer).

Obviously, pod manufacturers do not recommend placing pods at 90° . It may be said here that, since the Pod way stop is more efficient in stopping the ship, there is no need to use these 90° pod positions for stopping manoeuvres.

The ship was then stopped in several other less efficient ways (with an initial speed of around 13.5 knots):

- Turning both pods 60° outboard with propellers ordered at full negative rpm gave a distance of 2.6 SL
- Turning both pods 35° outboard with reduced rpm until speed is reduced to 8 kn, then turning both pods further to 180° with increased rpm gave a distance of 4.9 SL
- Reducing to 80 rpm, then turning pods 180° outboard, then at 11 kn reducing to 50 rpm, and at 8 kn reducing to 30 rpm (fast deceleration) gave a distance of 4.4 SL
- Reducing to 80 rpm, then at 11 kn reducing to 50 rpm, and at 8 kn reducing to 30 rpm then turning pods 180° outboard (smooth deceleration) gave a distance of 6.1 SL

The first of this group is surprisingly efficient with 2.6 SL.

The other three aim to turn the pods with reduced speed in order to reduce mechanical stresses. However, the resulting stopping distances of 4.4 to 6.1 SL are disappointing.

Finally, one test was conducted with a "turning stop":

• Turning port pod 45° outboard and the stb 135° inboard with full positive rpm gave a distance of only 2.0 SL

This test put both pods at 90° with respect to each other and induced a sharp turn of the ship. The stopping distance of 2.0 SL was very short, and a turning circle of around 2 SL was generated.

Obviously, this final track is possible only in cases where a sufficient lateral area is available.

6. COMPARISON WITH EXISTING DATA

It must be said that very little data has been published on this subject.

M. D. Woodward published results from model simulations in 2005 [1] and two of his simulations can be compared with the tracks reported here:

- his "Conventional Stopping Manoeuvre" (CSM), which is a full astern order,
- and his "Slew Stopping Manoeuvre" (SSM1), which is a 180° outboard turning of the pods at full rpm.

His simulations were performed with a 172 m ROPAX with 2 pods starting at a speed of around 27 kn, which is more than the 13.5 kn of the tracks reported here. If we take the liberty of using the part of his resulting deceleration curve from 13.5 kn down to zero, we see that his stopping methods take around 150 and 130 seconds respectively. That yields a total stopping distance of around 500 m and 440 m respectively, i.e. 2.9 and 2.5 Ship Lengths respectively.

In chapter 5 above, the results are 3.0 SL for CSM and 2.3 SL for SSM1 (Tracks 2.1 and 2.2 respectively).

This is quite close.

7. **REFERENCES**

- M. D. Woodward, M. Atlar and D. Clarke (University of Newcastle Upon Tyne) "Comparison of stopping modes for pod-driven ships by simulation based on model testing" *J. Engineering for the Maritime Environment, Vol. 219* 2005
- S. Burnay (BMT SeaTech Ltd) "Azimuthing pod propulsion and ship manoeuvring simulations" May 2001
- 3. Capt. C. Rynd (Master Queen Mary 2) "Podded propulsion" The Nautical Institute, Seaways, December 2007 & January 2008

APPENDIX 1 – PORT REVEL LAKE

APPENDIX 2 – PORT REVEL TECHNICAL DOCUMENTATION

PORT REVEL SHIPHANDLING

TECHNICAL DOCUMENTATION

WHY TRAINING ... ?!

Because human error is still the main cause of accidents.

WHY MANNED MODEL TRAINING ... ?

Because this is still the best way to acquire certain reflexes which, when the time comes, will make all the difference between being good and being the best. Training on the scale models provides experience that could never be gained on real ships for the simple reason that neither ship-owners nor local authorities would allow such risks to be taken. Scale models allow the shiphandler to make mistakes. Scale models allow experimentation on ship behaviour to explore unknown fields beyond the limits of safety.

Training on the manned 1:25 scale models is a complement to training on electronic simulators as it provides **additional experience** through a feeling of "**déjà vu**".

Safety at sea is our common aim

Nature is at work on scale models, with random effects that are similar to those of real-life situations. The unforeseeable nature of squalls, shallows, currents and waves calls for an immediate, appropriate reaction, without any repeat or automatic response ... and no "reset" switch.

For the same reason (natural phenomena) hydrodynamic effects are correctly reproduced on scale models and it is therefore unnecessary to transpose them in the form of complex equations. This gives a **better simulation of hydrodynamic effects** such as interactions between ships (for example in a canal), interactions between the ship and berth, small under-keel clearance (such as 10% of the ship's draught) and the use of anchor dredging in various operating situations.

The scale effect of wind on a manned model is well known, but it is also well known that this is in no way detrimental to the use of manned models for serious and effective shiphandling training. Wind is a factor in the everyday life of pilots throughout the world. The design of our manned model lake is such that **the wind element will vary in different parts of the lake**. This allows a course to be structured in such a manner as to introduce wind as and when required. Extreme wind conditions are encountered in the real world. If they occur at a manned model centre, with care they can be used in various scenarios to demonstrate how well control can be maintained.

The ship models behave exactly like real ships, only much faster. In carrying out a given operation with the model, such as mooring alongside a wharf for instance, **exactly the same instructions are given** to the engine room and helm as on a real ship, but there is only one fifth of the time available in which to give them.

Over 40 years of experience have shown that students quickly get the feel of their models in the same way as the real ships they are accustomed to handling.

Reality will be much slower than the model, thus leaving quite a lot more time to react. Manned models **sharpen the shiphandlers' natural senses** of perception and anticipation and enable an appreciation of the ships' behaviour as a whole.

The time scale also means that it is possible to perform five times as many manoeuvres. In other words, it is possible to perform as many manoeuvres in 35 hours on the models as in 175 hours on the real ship. If you then consider the cost of training on scale models compared to computer models as a **cost per manoeuvre** and **per pilot**, scale models might turn out to be even cheaper than computer models!!

								F	Ш	OR	L R	EVE		Ш									
	╞	BERL	z	GRENC	BLE	GILI	AC	BRITT	ANY	EURC	DE	ANTI	FER	BE	z	9 N-Q	ax	NORM	ANDIE	OTEI	ΓO	NORMA	NDIE
SH	dII	Tank	er	Tank	er	Tan	ker	Tank	er	Tan	ker	Tan	ker	FRAN	KLIN	LNG C	arrier	4 400	TEU	8 500	TEU	Cruise	ship
ċ		(fully load	ded)	(fully los	(papi	(variable	e load)	(variable	load)	(fully lo	aded)	(variable	e load)	LNG C	arrier		~	2000	111	(variable	e load)	000	4
ZIO	: :	38 000 0	JWD	43 000	IMD		1 dwi	Inn net	IMD	00 007		400 00	n awr	125 00)0 m ²	266 00)0 m [°]	100 50	IMD		1 d M L	200	_
٦	uit	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25	Real	1/25
u dd	F	201	8.05	191	7.62	269	10.75	305	12.2	329	13.17	337	13.47	256	10.24	332	13.28	261	10.45	319	12.76	261	10.45
Beam n	Ę	28.8	1.15	29.5	1.18	42	1.68	47.2	1.89	51.8	2.07	70	2.8	41	1.64	53.8	2.15	37.1	1.48	42.8	1.71	37.1	1.48
Loaded to Displ.		51 000	3.26	55 000	3.52	149 000	9.55	225 000	14.4	291 000	18.6	471 000	30.13	000 06	5.79	180 000	11.52	75 000	4.67	135 000	8.64		
Ballast _{tc} Displ. tc	., г	29 000	1.83	31 000	1.95	88 000	5.61	131 000	8.39	144 000	9.23	219 000	14.05		,	132 000	8.45			87 000	5.57		
Loaded Draught ⁿ	F	10.92	0.43	11.54	0.46	15.52	0.62	18.45	0.74	19.98	0.8	21.96	0.88	11.10	0.44	12.00	0.48	12.40	0.5	14.50	0.58	12.40	0.5
Aft	F	7.70	0.3	7.32	0.23	11.59	0.46	11.90	0.48	11.59	0.46	12.81	0.5			9.30	0.37		÷	10.20	0.41		
Ballast Draught																							
Fwd r	F	5.00	0.2	5.80	0.29	7.37	0.3	10.37	0.41	9.15	0.37	8.24	0.34	•	•	9.30	0.37	•		10.20	0.41		•
Actual Draught ^r	E	10.90	0.43	11.50	0.46	12.50	0.5	13.00	0.52	19.50	0.78	17.40	0.7	11.00	0.44	12.00	0.48	12.40	0.5	13.00	0.52	12.00	0.48
Shaft S.F H.P. S.F	Ľ.	17 500	0.224	17 500	0.224	24 000	0.308	32 000	0.41	32 000	0.41	45 000	0.57	32 000	0.41	52 000	0.66	52 000	0.66	93 000	1.19	57 000	0.72
Engine Tu type M	lot /		T&M		T&M		W		T&M		T&M	•	W		T&M	W	W	W	М	W	М	2 pods	2 pods
Rudder type	,		Norm	,	Norm		Norm & Becker		Norm		Norm		Norm		Norm & Schilling	Twin	Twin	Norm	Norm	Norm	Norm		•
Rudder De	:g/s.	3.1	15.5	2.6	13	3.5	17.5	2.5	12.5	2.6	13	2.1	10.5	2.6	13	2.6	13	2.8	14	2.5	12.5	7.5	37.5
Anchor			Manu		Manu		Electr.		Electr.		Electr.		Electr.		Electr.		Electr.		Electr.		Electr.		Electr.
Bow S.F Thrust. S.F	Ч. Т.	1 500	0.019	1 100	0.014	1 500	0.019	3 000	0.038	3 000	0.038	6 000	0.077	1 500	0.019		0.077	3 000	0.038	3 500	0.045	3 000	0.038
Stern S.F Thrust. S.F	Ч.Р.		,			1 500	0.019	3 000	0.038	3 000	0.038	3 000	0.038	1 500	0.019		0.077		0.038	•	0.021		0.038
Block Coeff.	,	0.79		0.8	2	3.0	33	0.8	~	0.8	g	0.8	6	0.1	76	0.7	79	0.6	30	0.6	57	0.6	0
The fleet end	somos	ises 11 sh	ins repr	oducina 21	slassav (at scale	1.25:						This is a	ll at scale	1:25						,	ł	
>> 7 tankers	from 1	17 to 400 (DOD dwt	with diese	motor a	nd steam	turbine												q		4	\$	
>> 2 LNG ca	Irriers																-04		1		~	3	
>> 2 contain	er ship	s, one bei	ing also:	a car car	ier, a cru	vise ship v	vith pods	and a twin	screw sh	ip with sin	gle rudde	3r				1			-	Δ_	ORT	REV	Ē
and 3 types o	of rudd	In ASU (vzimutai ntional, E	Secker and	e) and w	n vo vor g		nelaer muy	ulsion							.9	5	K	F		Ship	nandling	

Shown above: 7 oil tankers and 1 LNG tanker. The 125 000 dwt tanker has an optional Becker rudder, The 125 000 m³ LNG tanker has a Schilling rudder, The 125 000 dwt tanker has a variable draught from 10 to 12 m, The 190 000 dwt tanker has a variable draught from 13 to 16 m, The 400 000 dwt tanker has a variable draught from 15 to 19 m, The other tankers are fully loaded.

All ships at 1:25 scale. We strongly believe it is better not to change scales during the course, as getting used to several time scales (= square root of length scale) may be confusing for the students.

The container ship can be turned into a car carrier and a cruise ship with bridge at the bow. As a cruise ship, she receives two optional pods.

She can also reproduce a twin-screw ship with single rudder.

Three tugs are available. Two of them are Voith Schneider tractor tugs (one with the Turbo Fin). One is an Azimutal Stern Drive with Z-pellers.

The tugs are used both as escort tugs for emergencies and as harbour tugs for docking.

The tugs are of course also at scale 1:25 ... Can you imagine working with a model ship at one scale and a tug at another scale??!

Two brand new ships were commissioned in 2009 and 2010:

>> the CMA CGM OTELLO:

8500 TEU container ship 334 m long 42.8 m beam 10 to 14.5 m draught

>> the Q-Max:

266 000 m3 LNG carrier 345 m long 53.8 m beam 12 m draught

Obviously, **escort tugs will be used more and more around the world** in the future to increase safety at sea for some types of ship in some dangerous areas.

Introduction of the model tugs in our courses is a major advance as it allows experimentation with emergency shiphandling when mechanical failures occur on ships:

- rudder failures
- engine failures

Two tugs were introduced in 2000 at the request of several US pilotages. A third tug was introduced in 2006 and includes the Voith Schneider **Turbo Fin**.

One of the tugs is an Azimutal Stern Drive (ASD) with a Z-peller propulsion system. Two tugs have Voith Schneider propulsion (VSP). They can provide a bollard pull of over 100t, but are usually set to 50 to 70t. This is decided every morning with the students before starting the manoeuvres.

The tugs are remote-controlled by a professional tug master at the pilot's orders.

This is not reproduced on numerical simulators ... nor are the typical tug manoeuvres: pure and powered indirect modes, jacknife, push-pull, driving and flying to steering position, etc.

The ships are accurately constructed to conform with the principles of similitude and are fitted with indicators showing the ship's parameters. Information given by the indicators is at **full scale**.

Most models are fitted with **diesel motor and steam turbine**, and the Normandie can be controlled from the front deck like a car carrier and a cruise ship, so that the fleet in fact reproduces over **20 different vessels**.

One ship is fitted with an optional **Becker** rudder and another ship has a **Schilling** rudder.

On two ships, it is possible to have the **bridge forward**.

One ship can be fitted with **optional "pods"** in order to reproduce the behaviour of a 900 ft cruise ship. This means that the ship can be fitted either with a conventional rudder/propeller or with two pods.

All but one are fitted with a bow thruster. Most ships are fitted with **bow and stern thrusters**.

All ships but one have fully operational anchors.

Several ships have variable draught.

Each model is designed so that **the Master is at bridge level**. He calls out his instructions to the "crew", i.e. the helmsman, who steers the ship and operates the engine room telegraph. An instrument panel gives continuous **full scale** indications of propeller rpm, rudder angle, ship's heading and speed, and wind velocity and direction.

The sliding cover is positioned to correctly reproduce the effect of wind.

Nothing virtual at Port Revel

The lake is located near Grenoble (France), in a beautiful site in the middle of the forest of a natural park where the wind regime is very mild. Hence uncontrolled **wind effects** on ships are reduced to a minimum: no course has ever been stopped because of too much wind.

Port Revel is a permanent forum of ideas, an ideal meeting place where information and experience can be exchanged, or as a pilot once pointed out: "In regular life, a practising pilot is always alone. He has no-one around to comment on or discuss a particular manoeuvre. The only times when a manoeuvre is analysed and commented on is after an accident, when there is an inquiry. And that always takes place in a mood of tension. What I appreciate at Port Revel is that pilots observe your work in a calm, dispassionate and therefore constructive climate."

As a member of a consulting firm of a world-wide renown specialising in port and coastal engineering, Port Revel is also a place where port engineers and experienced mariners meet. The centre inherited Sogreah's **near-century of experience with scale models**, numerical simulation, port planning, design & construction.

A major lake extension to NE was commissioned in 2009. The physical dimensions of the lake are now approximately **5 miles x 2 miles** at a 1:25 scale, and any of <u>your</u> <u>local conditions</u> can be reproduced.

We have been there ...

A **Suez-sized canal** with bends has a length of 4 miles and includes a drawbridge. The lake features extensive **shallow water areas**, channels and many berths. Other features are **locks**, **offshore** platform and SBM.

It also includes wave, current and wind generators, and a very accurate track recording system is also available.

Currents are a main feature at Port Revel as **3.5 days out of 5** in the Shiphandling Course are conducted with currents: 2.5 days with clockwise current and 1 day with counter-clockwise current.

It can be seen above that **about half** of the lake is subjected to currents, i.e. currents are not confined to a small area where no manoeuvres can be done, or to a canal.

Currents reach speeds of up to 3 kn near Pier H at the south end of the lake, and up to 1 kn in the canal. New current fields in the North of the lake were commissioned in 2009.

Most of our docking exercises are done with current ahead, astern or abeam.

Wind is a factor in the everyday life of pilots throughout the world.

On manned models operating in the open air, it cannot be scaled down. Every effort is thus made to reduce the effect of wind on the lake:

>> First by choosing a location without wind, as in the **French Dauphiné**, which is far enough from the sea to have such a mild wind regime,

>> Second by choosing a lake in the heart of a **forest** in order to be sheltered by high trees,

>> Finally by installing adequate wind screens as was done at Port Revel in one place where manoeuvring was hampered by local wind.

But at Port Revel we are now able to produce wind!

As from 2007, a **movable wind generator** that can be placed anywhere on the lake, is used to reproduce wind effects during docking manoeuvres.

A unique feature at Port Revel is the wave generator. It is the only one of its kind in the world.

It generates a wave front of 750 m, i.e. around 3 ship lengths. This front propagates towards the south of the lake where it may encounter the current field.

It is generally set on H = 3 m and T = 8 s, as this values induce heavy rolling of the ship. However, these settings can be changed.

Following the waves towards the south of the lake, an SBM is found. That is where we sometimes organise **docking exercises on an SPM or an FPSO**.

This area can also be subjected to East-West currents, i.e. perpendicular to the wave field.

In this area a long track is also available for **ship-to-ship underway** training.

The best way to visualise the shallow waters of the Port Revel lake is to show the lake partly emptied. On this picture, the water level was lowered by about 1 m (25 m at full scale) showing the **very extensive shallow water area** of "Sogreah Bay" on the SE side of the lake with our "Ras Tanura" platform in the background.

Admire the flat bottom of the lake where anchor-dredging exercises are done in a water depth of 23 m.

Around 70% of the lake consists of shallow waters (< 27.5 m water depth)

Incic er level as shown above every 5 years in order to check and/or modify the bottom and banks of the lake. This is unique in the world of manned models.

Port Revel's canal is taken from a portion of the (old) Suez Canal when it was still **16 m deep and 80 m wide** on the bottom with 3 (hor.) in 1 (vert.) side slopes. Its length is nearly **7 km** and it includes both a curve and a straight part convenient for meeting and overtaking manoeuvres. It is a real canal, which is very different from prismatic flumes used by theoreticians.

Exercises involving ships **meeting and overtaking** are performed in the canal. In addition, the canal is used for experimenting with tugs in case of a rudder failure.

This part of the course is definitely very impressive.

A **drawbridge** was installed in the straight part of the canal leaving a passage of 68 m as shown in the picture above.

When the lake level is lowered, the canal is reshaped. The resulting accuracy is +/-1 cm (+/-25 cm at full scale).

All types of quay are in use at Port Revel: solid quaywalls, fully open wharves on piles and berths on a rubble slope.

Nearly 50 quays are scattered around the lake in various locations, some of which are subject to **current action**.

At the NE end of the lake 23 m, 16 m and 14 m deep harbour basins are reproduced with quays.

A reproduction of the **new Panama locks** is also available.

The canal also includes a notch where a demonstration is often made to pilots as to the effect of a ship **passing a moored ship**.

A very accurate **track recording system** is available: the position of 3 ships can be determined with an accuracy of 25 cm (10 inches) at full scale, anywhere on the lake. Ship positions and headings are sent to the base along with data on rudder angle, rpm, wind speed and direction, ship speed, etc.

Printouts of manoeuvres are provided and discussed with the participants at the end of each day.

The picture above illustrates one of the strong features of the Port Revel centre, i.e. the vast difference between manoeuvring in deep water and manoeuvring in shallow water.

In fact, captains and maritime pilots really need a training centre with extensive shallow waters, because that is where most of the ship manoeuvring is conducted.

Frankly speaking, we dropped the night exercises a few years ago because they proved to be **not very useful**, although they were good fun ...

The main problem was that our instructors could not see what students were exactly doing on the lake.

Furthermore, we had to wait until late in the night to reach sufficient darkness (NB: this is even worse in summer time in northern Europe) making it hard to wake up the next morning.

As a matter of fact, we believe training under night conditions is more effectively performed on a computer simulator.

But our lighting system is still operational and, should anybody wish to experience such a night training, **it can be organised**.

Highly experienced instructors work on a part time basis: all of them are licensed captains and former maritime pilots. In addition, two former tug masters control the escort tugs:

Alain CHARMASSON (Le Havre pilot), Marc DERLYN (Dunkirk pilot), Bernard GILAND (Dunkirk pilot), Jean-Paul JEANJEAN (Sète pilot), Raymond LEOSTIC (Le Havre pilot), Michel RENSON (Marseilles pilot), Michel SABATIER (Sète pilot), Jean-Claude SERRIERE (Nouméa pilot), Olivier THOMAS (Loire Pilot), Jean-Marie TROUSSELARD (Marseilles pilot), Marc VAN VLIET (Amsterdam pilot)

and 3 tug captains:

Marc BARTHELEMY, Michel VALLETTE and Gilles MOSSE

That makes a total of over 300 years of seamanship!!

Port Revel's instructors are highly appreciated by all students who come to the centre. They are **very pragmatic seamen** and provide both lectures in the conference room <u>and</u> training on the lake.

The traditional 5-day **Pilot & Master Shiphandling Courses** are designed for pilots and masters who are required to handle ships of all kinds, such as tankers, container-, gas- and ore carriers.

The course consists of a theoretical part, about 5 hours of lectures (as a reminder or to acquire new knowledge), and a practical part, **35 hours of shiphandling on the lake**. That makes a total training time of 40 hours for a 5-day course.

The purpose is to increase safety in all circumstances through better knowledge of the manoeuvring capabilities (and limitations) of all kinds of ships, in open and restricted waters.

This course is recommended for pilots training for the first time on manned models

Most courses are **5 days** long.

The "Emergency Shiphandling Course" is focused on emergencies, including training with escort tugs and use of anchors in waves and in currents. This course is also recommended for those coming for their second time on manned models.

This course is often combined with some "**Experimenting with pods**" to provide a high level advanced course for senior pilots.

The "Q-Max Course" is focused on twin-screw LNG carriers and other large bulk carriers. It includes emergencies with rudder/engine failures and work with escort tugs and anchors.

In addition, a **fully-customised 5-day course** can be organised, e.g. with more training with waves and berthing on our SBM and on our fixed offshore platforms, using various kinds of tankers (7 tankers ranging from 17 000 dwt up to 400 000 dwt with various loadings, three rudder types), more work with escort tugs and/or podded ships, or LNG and/or container carriers, specific work on your local conditions, etc.

The course content will be prepared to your satisfaction once we know more about **your needs**.

In any case, special attention will be given to **coordinating with pilots' training on their computer simulator** in order to be complementary.

The **Emergency Shiphandling Course** is designed for experienced pilots and masters who wish to experiment with mechanical failure on ships and appropriate reactions with **anchors and/or tugs**.

Such experience could never be gained on real ships as neither ship-owners nor local authorities would allow such risks to be taken, with manoeuvres such as:

- drift and manoeuvring in swell and/or current,
- rudder failure in a canal,
- emergency stopping in a canal with anchors,
- · docking and undocking with dredging anchor,
- zigzag manoeuvre with escort tug at stern and engine/rudder failures,
- proceeding through channels with engine/rudder failures, using the escort tug to stay in the channel

We try to provide you with a "déjà vu" effect.

Over 200 students have experienced this course since 2000 and all agree that our tug masters manoeuvre the tugs in a **most realistic** way.

Experimenting with pods is designed for experienced pilots and masters who wish to discover **podded propulsion** and associated mechanical failures.

The Normandie can be fitted with **optional "pods"** in order to reproduce the behaviour of a 900 ft cruise ship. This means that the ship can be fitted either with a conventional rudder/propeller or with two pods.

The pod parameters are taken from the **Queen Mary 2**, including the "Fast" and "Standard" manoeuvring modes with corresponding engine accelerations and decelerations, torque limitations, and steering limitations.

See also: <u>http://www.afcan.org/dossiers_techniques/port_revel2_gb.html</u>

Typical manoeuvres are:

- docking and undocking with current,
- crabbing with pods and bow thruster,
- backing into a slip,
- pod failures and emergency stopping.

This is obviously done without the all-in assistance of a "joystick" but with two conventional control units.

Such a course may also be combined with:

- emergency shiphandling with escort tugs and anchors,
- some local navigation conditions.

The Port Revel centre is located a one-hour drive from Lyons airport, and we organise airport pickup.

The centre is located in the forest of a peaceful natural park near an 11th century castle.

It's only a 15-minute drive away from the hotel.

The hotel is located in a typical scenic French village with at least ... 2 bars,

and with a swimming pool in front of your room and marvellous food. see: <u>http://www.hostelleriedechambaran.com/</u>

Our assistant will organize your trip from your arrival in France until your departure, including hotel bookings in Lyons, Nice, Chamonix, Paris, and so on ...

Over 6000 mariners have been to Port Revel in the past 40 years.

Manned models are considered by ships' captains and pilots - shiphandlers par excellence - as **the next best thing to a full-scale** prototype for studying and understanding a ship's behaviour.

All seamen who have been to Port Revel consider that our type of training is complementary to that provided by simulators. They even say that it is **more realistic** than simulators.

See also: <u>http://www.marine-marchande.net/groupe%20mar-</u> mar/Documents/F.Massard/Port-Revel_Marine-marchande/Port-Revel_GB_1_Marine-marchande.htm

During the 1970s, most participants were captains, while the first pilots came to discover the centre.

During the 80s, the ratio of 9 captains to 1 pilot was reversed as pilots discovered the great value of training on manned models in very shallow waters.

In the 90s, the first refresher courses were organised for pilots, who returned every 5 years. These courses are less directive and leave more room for customisation, which is a way of optimising port operations to increase port accessibility.

Over this last decade, we have seen a change in our relations with mariners. We are **now moving towards a closer partnership** in which participants use our installations at their convenience. Courses and equipment are specially designed in close collaboration with them.

The Port Revel Centre was **the first** of its kind in the world, back in 1967, and its strong features are still:

> Over 6000 experienced pilots and captains have been trained there since 1967 (mainly from the USA, Canada and Europe); many of them are now coming for the second (and even third and fourth) time in their career,

- courses can be tailored to reproduce local navigation conditions,
- > instructors are highly-experienced maritime pilots,
- > the fleet of 11 models at scale 1:25 reproduces over 20 different vessels,
- > 3 escort tugs are operated by a real tug master at the pilot's orders,

Port Revel has inherited Sogreah's near-century of experience with scale models, numerical simulation, port planning, design & construction,

the 5 ha (13 acre) lake is highly flexible with very little interference from wind; it also features many shallow water areas, and includes a wave generator, a current generator and a wind generator,

the DGPS allows accurate debriefing of the exercises performed on the lake,

the centre is located in a peaceful natural park: no time wasted, no disturbances, no stress,

> pilots constitute 90% of centre attendees:

Port Revel is the best place for shiphandling training

This is what we would like to avoid:

You can have it ...

>> on the rocks ...

>> on the beach ...

>> as a T-bone ...

>> or a French kiss

Any of these accidents costs as much as **hundreds of weeks** of training ... The total cost of the Valdez disaster is even in the order of 1 million courses!!!!

... and please remember the IMO's resolutions which recommends continued proficiency and updating of knowledge be undertaken at intervals not exceeding five years...

Port Revel Shiphandling 3500 route de Revel 38870 St Pierre de Bressieux, France +33 (0)474 200 240 port.revel@sogreah.fr www.portrevel.com

TECHNICAL DATA SHEET (2010) All data at full prototype scale (except if stated differently)

.

SCALES		
Number of length scales	1	20179-005
FLEET		
Manned models	11	
Manned vessels reproduced by the models	20	
Tankers w turbine (17 000 - 400 000 dwt)	5	
Tankers w motor (17 000 - 400 000 dwt)	7	
LNG carrier (twin screw w motors only)	1	
LNG carrier (turbine & motor)	2	
Container ships (w motor only)	2	
Car carrier (container ship w bridge at bow)	1	
Podded ship (container ship w optional pods)	1	
Twin screw ship w single rudder (reversed pods)	1	
Ships w optional bridge at bow	2	
Ships w optional Becker rudder	1	
Ships w Schilling rudder	1	
Ships w operational anchors	10	

	1
Ships w operational anchors	10
Ships without operational anchors	1
Ships w bow & stern thrusters	8
Ships w bow thruster only	3
Ships w GPS-GLONAS tracking system	5
GPS-GLONAS tracking accuracy (m)	0.25 m
Parameters reported by tracking system to base	10
Parameters reported on board (minimum)	6
Tug w 100t BP: Voith Schneider tractor	1
Tug w 100t BP: Voith Schneider tractor w Turbo Fin	1
Tug w 100t BP: Azimutal Stern Drive	1

LAKE	
Surface used for shiphandling	5.0 ha
Used for training ONLY	yes
Can be emptied	yes
Percent of shallow water area (< 27.5 m)	70%
Percent of area w currents	50%
Highest current along a berth (kn)	3 kn
Highest current in canal (kn)	1 kn
Percent of time w wind > 50 kn, April	7%
Percent of time w wind > 50 kn, June	3%
Percent of time w wind > 50 kn, August	<1%
Percent of time w wind > 50 kn, October	<1%
Artificial wind generator	1
Canal length (km)	6.7 km
Canal water depth (m)	16 m
Canal width at bottom level (m)	80 m
Drawbridge w 68 m passage	1
Locks	2
Depth of harbour basin (m)	16 m
Offshore buoy	1
Wave front length generated (m)	750 m
Wave height: usual value (m)	3 m
Wave period: usual value (s)	8 s
Berths, open wharf type	14
Berths, solid quaywall type	18
Berths, open type on rock slope	12
Berths in canal	2

31

COURSES	
Instructors w over 20 years experience	9
Client's instructor admitted as instructor	yes
Tug masters w over 15 years of experience	2
Port engineer	1
Conferences (hours, real time on 5-day course)	8 h
Manoeuvring on the lake (hours, real time on 5-day course)	35 h
Days w current (on 5-day course)	3.5 days
Night training possible	yes
Coordination with training on simulator possible	yes
Fully customized course possible	yes
Open weeks per year	25
Maximum number of participants per year	250
Manual content (approx nb of pages)	400 pp
LOGISTICS	
Travel time from Lyons intl airport to training centre (h)	1 h
Travel time from hotel to training centre (min)	15 min
EXPERIENCE	
Years of operation as training centre (>> 2009)	43 years
Total nb of participants (>> 2009)	6125
Nb of participants par year (2007-09)	180-200
Attendance: percent of pilots (average 2000-09)	90%

Rien n'est virtuel à Port Revel

Track	Date	Starting	Starting	Pod s	ettings	Turning circle	Stopping	Observations
N°		time	speed	pt/stb	pt/stb	diameter	distance	
	yyyymmdd	hh:mm	kn	rpm	azimuth	ship lengths	ship lengths	
Series 1: c	ompare turning	circles:						
1.1.1	20100521	08:20	10.0	55	40	3.4	-	Traditional ship stb turn with rudder at 40°
1.1.2	20100521	08:27	10.0	55	-40	2.8	-	Traditional ship port turn with rudder at 40°
1.2	20100503	09:03	10.0	70/70	-30/-30	2.8	-	Podded ship, stb turn with 2 pods at 30°
1.3.1	20100503	09:11	10.0	70/0	-35/0	3.9	-	Podded ship, stb turn with stb pod at 35°
1.3.2	20100503	09:21	10.5	0/70	0/-35	2.4	-	Podded ship, stb turn with port pod at 35°
1.4	20100503	08:53	10.0	70/70	-20/-20	3.2	-	Podded ship, stb turn with 2 pods at 20°
1.5	20100503	08:39	10.0	70/70	-10/-10	4.9	-	Podded ship, stb turn with 2 pods at 10°
Series 2: c	ompare stoppin	ig manoeuvi	res:					
2.0	20100503	09:46	10.0	0/0	0/0	-	4.1	Propellers in line and stopped (induces 3 L lateral transfer!)
2.1	20100503	10:46	13.5	-100/-100	0/0	-	3.0	Reverse propeller to full negative rpm (= full astern)
2.2	20100503	10:56	13.5	100/100	-180/-180	-	2.3	Turn both pods 180° outboard with full positive rpm
2.3	20100503	11:06	14.0	100/100	-180/-180	-	2.1	Idem inboard turning (Pod way stop)
2.4	20100503	11:15	13.5	100/100	90/-90	-	2.9	Turn both pods 90° inboard with full positive rpm (transverse arrest)
2.5.1	20100503	09:30	9.5	0/0	90/-90	-	5.0	Idem with propellers ordered at stop (induces 2.5 L lateral transfer!)
2.5.2	20100503	09:37	9.5	0/0	-90/90	-	5.0	Idem with pods turned outboard (induces 2.5 L lateral transfer!)
2.6	20100503	11:26	13.5	-100/-100	-60/60	-	2.6	Turn both pods 60° outboard with propeller ordered at full negative rpm
2.7	20100503	11:34	13.5	sequ	uence	-	4.9	Turn both pods 35° outboard with reduced rpm until speed is reduced to 8 kn
						-		then turn both pods further to 180° with increased rpm
2.8	20100503	11:44	13.5	sequ	uence	-	4.4	Reduce to 80 rpm, then turn 180° outboard, then 11kn/50rpm, 8kn/30rpm
2.9	20100503	11:54	13.5	sequ	uence	-	6.1	Deceleration: 80rpm, then 11kn/50rpm, 8kn/30rpm & turn 180° outboard
2.10	20100503	12:03	13.5	100/100	-45/-135	-	2.0	Turn port pod 45° outboard and the stb 135° inboard with full positive rpm
								(induces 1.5 to 2 L lateral transfer)

APPENDIX 3 – AZIPILOT TRACKS ON THE PORT REVEL LAKE

APPENDIX 4 – DETAILED RESULTS FOR TURNING CIRCLES

a.

	ORICKX, Bart BONDUE																																				
	tTENS, Gerit HEND		Stern Thruster		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop
ß	38h02m40s , Gijs MEF		Bow Thruster		Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop
ing Circle o current	- 05-21 - (1 RASQUIN		RPM	rpm	53	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53	າ ຕິ	54	54	2 CC	54	54	2 C C C	53	53	23	53	53	54	53	53	23.0	53	ب م م	23	53	53	54 54	54	54		54	54		20.0	53
: Turn : 1- N	: 2010 : t2 CH, Danie		Rudder	0		1 10	ۍ ۲	2 7	-2	9.0	- 27-	ا m ا	m (η η η	-2	-7	<u>ີ</u>	м I	Ϋ́	2 7	40	40	40	40	40	104	40	40	40	40	40	40	40	40	40	40	40
Lake Current	Sequence Stop Bruno FISHBA		Wind Direction	·	00	00	00	0	0	0 0	00	0	0 0	00	0	00	00	0	00	00	0	00	00	0		00	0	0 0		0	0		0	0		00	0
	PUYVELDE,		Speed	kts	00	00	00	00	0	00	00	0	0 0	00	0	00	00	0	00	00	0	0 0	00	0		00	0	00		0	0		00	0	00	00	0
21052010	Dírk Van I		Heading	0	14	14	14	13	13	- 13 - 13	10.1	13	6 F	13	13	13	13	13	13 -	1.0	13	21 21	15	17	101	19	26	26	000	34	34	41	44	44	4 2	ο ιΩ	55
MANDIE	ESTER,	wd	>		10.01	10.01	10.01	10.01	10.0	10.01	10.01	10.0	10.01	10.01	10.0	10.01	10.01	10.01	10.01	10.01	10.0	0.01	10.01	9.5	ס ת ח ח	0.0	9.5	<u></u> б.	0.6	0.6	0.6	ນ ແ ກ	0 0	8.5	ο c 2 α	7.5	7.5
ING NOR	andie MEULEME	ຣ 55 1	ΤΛ	knots	ດ ດີ ເມີຍ	າ ທ າ ທ	0 0 0	о. 0. 0.	9.5	ທ ທີ່ເ	0 10 0	9.5	ດ ດີ	0.0 0.0	9.5	ი. ი ი	ы. 6	9.5	ი. ი ი	9 9 9 9	9.5	ס ע ט ח	л. 9. ГО	9.0 1	ດ c ກ່ອ	0.6	0.6	0.0	0 00 0 00	8.0	0 I 8 t	0 L	6.5	9.2 9	0 U U U U	0.0 0.0	5.5
: TURN : s: Raym	: Norm : t1 : Jan	o noeud	٨٢		0.0 0.0	5.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0 10.0	0.0	0.0	0 C	2.0	0.0	0.0	0.0	5.0	ν η Ο Ο	2.0	ي. م. م	0.0 0.1	2.0	5.0	0.0 0.1	0.0 0	5.0	0.0 .0	0 0 0 0	5.0	0.0 .0	0 C	0.0 0	5.0
ession: Name Path Instructor	equence: Tracks Start Students Mes:	vitesse 1	Time	HHhMMSSs	08h19m30s	08h19m32s	08h19m33s	08h19m35s	08h19m36s	08h19m37s	08h19m39s	08h19m40s	08h19m41s	08h19m43s	08h19m44s	08h19m45s	08h19m47s	08h19m48s	08h19m49s 08h19m50c	08h19m51s	08h19m52s	08h19m54c	08h19m55s	08h19m56s	2/ CITE 108/	08h19m59s	08h20m00s	08h20m01s	08h20m03s	08h20m04s	08h20m05s	08h20m07s	08h20m08s	08h20m09s	08h20mlus	08h20m12s	08h20m13s
ů č	n n		H																																		

Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	SFOD	SLOD	Stop	Stop	Stop	Stop	Stop	stop Stop	STOD STOD	Stop	Stop	Stop	Stop	Stop	Stop	Stop	SFON	Stop	Stop	Stop	Stop	stop	Ston	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	arch ar	SCOP	acop acop	SLOD	Stop	Stop	Stop
Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	scop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	arop	scop	STOP -	Stop	Stop	Stop	Stop
53	53	53	5.5	0 0 0	53	53	53	53	53	54	54	53		ب م	 ນີ້ ນີ້	n N N	53	53	54	54	5 C C	0 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23	53	54	54	54	54	4 4	5 C	54	53	53	53	5 C L	0 C 0	53	53	53	53	54	54	53	ר ע ע ע	4 L	1 0 7 4	ר רי רי רי	200	53	53	53
40	40	40	04	40	40	40	404	40	40	40	40	40	40	40	40	40	40	40	40	40	0.4		04	40	40	40	40	40	40	0.4	077	40	40	40	40	- 4 0	40	40	40	40	40	40	40	40	47 C		40		40	40	40	40
0	0	00		00	0	0 0		0	0	0	0	0	0 0			0 0	0	0	0	0 0				0 0	0	0	0	0	0 0			00	0	0 0	0 0		00	0	0	0	0	0 (0 0	00	 > c	 > c		0 0	0	0	0	0
0	0	00			0	00		0	0	0	0	0	2 0			00	0	0	0	0 0				0	0	0	0	0	0 0			00	0	0 0	0 0		00	0	0	0	0	0 0		0 0		c	- c		00	0	0	0
59	59	62	0 10	69	73	73	76	80	80	86	86	68	 20 C	- co	- 001	1001	103	103	107	1 0 T	113	117	117	120	120	126	126	130	130	123	140	140	143	143	146	140 140	150	156	156	159	159	163	163	169	1 7 0 1		176 1	176	182	182	185	185
7.5	7.5	7.5	0.1	7.0	7.0	0.1	0.7	6.5	6.5	6.5	6.5	5 V	0 1	0 u	6.0	6.0	6.0	6.0	6.0	0.0	0.0		6.0	6.0	6.0	5.5	5.5	0.9	0.9	0.0	о С С	5.5	5.5	ທີ່ ທີ່		0 u	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.5	5.5	5.5	5.5		0 I	ה ה ה	ດ ແ ດ	о и о и	1 1 1		5	5.5	5.5	5.5
5.0	5.0	4.5 7.1	4 m	9.P	3.0	3.0 0.6	0.0 9	2.5	2.5	1.5	1.5		c	0 u		0.0	-0.5	-0.5	-0.5	0. 0.	 	ית היי	-1.5	-2.0	-2.0	-2.5	-2.5	-3.0	0.5-	0 C	 	13.5	-4.0	-4.0	-4.0	0.4-	-4.5	-4.5	-4.5	-4.5	-4.5	- 4 - 2 - 5	ו 14. ר	- D. D	0 C 0 L 1 L		0.0	-5.0	-5.5	-5.5	-5.5	-5.5
5.0	5.0	0.0 0.0	0 c	5.0	5.0	0.0 10	0.0 0.0	5.0	5.0	5.0	0.0 .0	0.0 0.0	0 u	ວ ເ ດ ນ	0 C	5.0	5.0	5.0	0.0 0.0	0 C	ວ c ດ ແ	о с	5.0	5.0	5.0	5.0	5.0	0.0 	ວ c ດ u	0 C	0.0	5.0	5.0	0.0 0	0.0 0.0	0 C	5.0	5.0	5.0	5.0	2.0	0. 0.	0.0	0.0		> c	0.0	0.0	0.0	0.0	0.0	0.0
08h20m14s	08h20m15s	08h20m16s	St THUSHBO	08h20m19s	08h20m20s	08h20m21s	08h20m23s	08h20m24s	08h20m25s	08h20m26s	08h20m27s	08h20m28s			08h20m32s	08h20m33s	08h20m34s	08h20m35s	08h20m36s	18/5m02n80		08h20m40s	08h20m41s	08h20m42s	08h20m43s	08h20m44s	08h20m45s	08h20m46s	08/70m400	08h20m49a	08h20m50s	08h20m51s	08h20m52s	08h20m53s	SPCmCcdo0	C C C C C C C C C C C C C C C C C C C	08h20m57s	08h20m58s	08h20m59s	08h21m00s	08h21m01s	SZOWIZU80	SCUMIZURU	08hZ1m04s		0000101000	08h21m08s	08h21m09s	08h21m10s	08h21m11s	08h21m12s	08h21m13s

ŭ	2 00	St	St	St	St	St St	S t	מי	s t	S t	St	St	St	St	St	S L	ט מ נ	0 0 1 1	2 U	N N	St	St	St	St	S.T	st	0 0 1 1	0 U U U U	Ω Ω	St.	St	St	St St	N L	0 U 7 T	S C	St	St	St	0 U U U U U	20,00	St	St	St	St	N U	7 U U 7 T	2 1 1	St	St	st.	Ω Ω L	S C C C
Ston	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	scop	stop	Stop -	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	SFOD	Stop	Stop	Stop	Stop	Stop	Stop	stop -	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	stop Stop
۲. ۲		53	53	53	53	53	ب کر د	- 40 - 41	54	54	54	54	54	54	54	54	4, r			23	54	54	54	54	54	54		- 7 7	54 -	53	53	53	53		0 G	20	54	54	54	40 u	20	53	53	54	54	 ທີ່ມີ ເ			53	53	54	54	53
40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40		40	40	40	40	40	40	40	40	07	40	40	40	40	40	40	07	40	40	40	40	40	40	40	40	40	40	40	104	04	40	40	40	40	40
c	0	0	0	0	0	0			0	0	0	0	0	0	0 0					0	0	0	0	0 0	 D (0 0		 > c	00	0	0	0	0 (o c		0	0	0			0	0	0	0	0	00	 > c	00	0	0	0 0	00	
0	0	0	0	0	0	0 0		00	0	0	0	0	0	0	0 0	 > c	o			0	0	0	0	0 0					00	0	0	0	0 0			00	0	0			00	0	0	0	0	00		00	0	0	0 0	00	> 0
188 1	195	195	198	198	201	201	204	211	211	215	215	218	218	222	222	677	677	222	235	235	238	238	241	241	C 4 2	245	102	254	254	258	258	261	261	1.97	022	270	273	273	91.7	280	282	285	285	288	288	294	1 100	297	300	300	307	307	310
5.5	5.5	5.5	5.5	5.5	5.5	ດ.ບ ເ	0 u	. n	5.5	5.5	5.5	5.5	5.5	5. G	ה. היי	ດ ເ ດ	0 U	າ ເ າ ນ ຄ		5.0	5.0	5.0	ۍ. ٥	0 I In I	0 L	ດ ມ ດ ມ	ດ ທ ດ		5.0	5.5	5.5	5.0	0.0	0 c		5.0	5.0	5.0	0.0		5.0	5.0	5.0	5.0	0.0	0.0 0.0	- c	0.0	5.0	5.0	0.0	5.0	0.0
- 5 - 5	-5.5	-5.5	-5.5	-5.5	-5.5	ດ ດີ ເ	0.0 1	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-4.5	- 4 - 5 - 1	ו איי טר	n c	0.4-	-4.0	-4.0	-4.0	-4.0	-3.5 -	ທ. ຕີເ	n .	ν. υ. υ.	0 C	2.0	-2.5	-2.5	-2.5	-2.0	-2.0	י י י י) LC	-1.5	-1.0	-1.0	0.1-	10	-0.5	0.0	0.0	0.5	0.5	1.0		1.0	1.5	1.5	1. 1.	ы. Г	0.0
0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0		-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-5.0	- 5.0	0. n 0. n	о. с и	0 C	- 2.0	-5.0	-5.0	-5.0	-5.0	0.0 	0.u	0.0 1 1	0 0 0 1 1	- 0.0 - 10 - 10	-5.0	-5.0	-5.0	-5.0	0.0 1	0.0 1 1	0.0	-5.0	-5.0	-5.0	 		-5.0	-5.0	-5.0	-5.0	- 2 · 0	2 U U	2 C C	-5.0	-5.0	-5.0	ດ ທີ່ 1	- 2.0	- 5.0
08h21m15s	08h21m16s	08h21m17s	08h21m18s	08h21m19s	08h21m20s	08h21m21s	08h21m22s	08h21m24s	08h21m25s	08h21m26s	08h21m27s	08h21m28s	08h21m29s	08h21m30s	08h21m31s	06h21m225	SCCIIITZIIOO	08h21m35s	08h21m36s	08h21m37s	08h21m38s	08h21m39s	08h21m40s	08h21m41s	SZ#WIZIIOO	08/07/04/28	08h21m45s	08h21m46s	08h21m47s	08h21m48s	08h21m49s	08h21m50s	08h21m51s	SZCMIZU80	08h21m54s	08h21m55s	08h21m56s	08h21m57s	SBCMIZUBU	08h22m00s	08h22m01s	08h22m02s	08h22m03s	08h22m04s	08h22m05s	1800m22n80	a martine a	08h22m09s	08h22m10s	08h22m11s	08h22m12s	08b1m22n80	08h22m15s

08h22m17s - 98h22m18s - 98h22m18s	0.0	5	0.	515	c	C	0.	5		ť
08h22m18s - 1	с с			>+>	-	2	4 U	50	SCOP	SLOD
	N.0	5.0	0.	316	0	0	40	54	Stop	Stop
08h22m19s -	5.0 2	5.0	0.	316	0	0	40	54	Stop	Stop
08h22m20s -!	5.0 3	.0 5	0.	322	0	0	40	54	Stop	Stop
08h22m2ls -	5.0 3	.0 5	0.	322]	0	0	40	54	Stop	Stop
08h22m22s -	5.0 3	.0	0.	324	0	0	40	53	Stop	Stop
08h22m23s -	5.0 3	.0	0.	324	0	0	40	53	Stop	Stop
08h22m24s -!	5.0 3	5.5	0.	328	0	0	40	54	Stop	Stop
08h22m25s -1	5.0 3	م	0.	328	0	0	40	54	Stop	Stop
08h22m26s -	5.0 3	.5 5	0.	334	0	0	40	53	Stop	Stop
08h22m27s -	5.0 3	5 5	0.	334	0	0	40	53	Stop	Stop
08h22m28s -!	5.0 4	.0 5	0.	337]	0	0	40	54	Stop	Stop
08h22m29s -	5.0 4	.0 5	0.	337	0	0	40	54	Stop	Stop
08h22m30s -!	5.0 4	.0 5	0.	340]	0	0	40	53	Stop	Stop
08h22m31s -!	5.0 4	.0 5	0.	340]	0	0	40	53	Stop	Stop
08h22m32s	0.0 4	5.5	0.	346]	0	0	40	53	Stop	Stop
08h22m33s] - (9.0 4	5 5	0.	346	0	0	40	53	Stop	Stop
08h22m34s	0.0 4	.5	0.	349]	0	0	40	53	Stop	Stop
08h22m35s -(9.0 4	5.5	0.	349	0	0	40	53	Stop	Stop
08h22m36s -1	0.0 4	5 4	<u>.</u>	352]	0	0	40	53	Stop	Stop
08h22m37s -1	0.0 4	5.4	.5	352	0	0	40	53	Stop	Stop
08h22m38s -1	9.0 4	5	0.	355	0	0	40	53	Stop	Stop
08h22m39s -1	9.0 4	5	0.	355	0	0	40	53	Stop	Stop
08h22m40s -1	0.0 4	5	0.	2	0	0	40	53	Stop	Stop
08h22m41s -1	0.0 4	5 5	0.	5	0	0	40	53	Stop	Stop
08h22m42s	0.0 4	5 5	0.	ی د	0	0	40	53	Stop	Stop
08h22m43s -1	0.0 4	5	0.	5	0	0	40	53	Stop	Stop
08h22m44s - 1	0.0 5	0.0	0.	8	0	0	40	54	Stop	Stop
08h22m45s	0.0 5	0.0	0.	8	0	0	40	54	Stop	Stop
08h22m46s - 1	0.0 5	.0 5	0.	14	0	0	40	53	Stop	Stop
08h22m47s	0.0 5	0.0	0.	14	0	0	40	53	Stop	Stop
08h22m48s	0.0 5	0.5	0.	18	0	0	40	53	Stop	Stop
08h22m49s	0.0 5	.0	0.	18	0	0	40	53	Stop	Stop

		Stern Thruster		Stop	Stop	Stop	Stop	Stop	SLOP SLOD	Stop	Ston	Stop	Stop	Stop	Stop	LeftStro	LeftStro	Stop	Stop	Stop	Stop	STOD	Stop	Stop	Stop	STOP	Stop	Stop	Stop	Stop	Stop	stop							
es 08h02m40s		Bow Thruster		Stop	Stop	Stop	Stop	Stop	STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	SLOD	LeftStro	LeftStro	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	done	Stop	Stop	Stop	Stop	Stop	Stop
ning Circl No current 0-05-21 -		RPM	шdл	57	53	200	57	57		56	56	57	57	200	56	56	57	101	57	57	57	- L L L	0	0	57	20	56	57	/ C U	57	57	57		00	56	56	56	57	57
: Tur : 1- : 201 : t4		Rudder	0	-2	9 G	2 2	- 2	1 1		i m	ξ		1 07-	-40	-40	-40	-40	-40	-40	-40	-40	-40	0	0	-40	-40	-40	-40	-40	-40	-40	-40	07-	-40	-40	-40	-40	-40	-40
Lake Current Sequence Stop		Wind Direction	0	0	0 0	00	0	 o		0	0	0		00	0	0	0 0		0	0	0 0		0	0	00	00	0	0 0	 	0	0	0 0		00	0	0	0	00	00
		Speed	kts	0	00	00	0	00		0	0	0			0	0	00		00	0	00	00	0	0	00	00	0	00		0	0	0 0	 > C	00	0	0	0 0		
21052010	is 55 rpm	Heading	0	348	348	348	348	348	349	349	349 [349	349	349	348	348	345	342	342	334	334	331	0	0	318	313	313	308	300	300	295	295	060	286	286	277	277	273	269
MANDIE DSTIC	.0 noeu			10.0	0.01	10.0	10.0I	0.01	10.5	10.5	10.5	10.5	0.01	10.01	10.0I	10.0	10.01	9.5	9.5	9.5	5 5 6	0.0 0.0	0.0	0.0	ດ 20.02		8.5	0.0	0.0	8.0	7.5	1.01	. r	7.5	7.5	7.0	0.1	0.7	7.0
NING NOF mond LEC mandie	itesse	ΔŢ	knots	10.0	10.01	10.0	10.0	0.01	10.0	10.0	10.0	10.0	10.01	10.0	10.0	10.0	10.0	9.5	ь. С	9.0	0.0	0.0	0.0	0.0	7.5	7.0	7.0	ر م	0 0 0	5.5	5.0	0.v	1 1 1 1 1 1	3.5	3.5	9.0	0. m	0 U 0 V	0.0
: TUR : rs: Ray : Non : t3	ircle v	ΛΓ		0.0-	0.0-	0.0-	0.0-		-0.0	-0.0	-0.0	0.0-	0.0-	-0.0	-0.0	-0.0	0.0-	0.0-	-0.0	-5.0	0.0 1.1	0.0 	0.0	0.0	0.0 1 1	-5.0	-5.0	- n 0.0	- 2.0	-5.0	-5.0	- 5.0	0.6-	-5.0	-5.0	-5.0	- 5.0	- n - n	-5.0
Session: Name Path Instructo Sequence: Tracks Start Start Students Notes:	turning c	T Time	HHhMMmSSs	08h27m24s	08h27m255	08h27m27s	08h27m28s	08h27m30c	08h27m31s	08h27m32s	08h27m33s	08h27m34s	08h27m36s	08h27m37s	08h27m38s	08h27m39s	08h27m40S	08h27m42s	08h27m43s	08h27m44s	08h27m45s	08h27m47s	:08h27m48s	! 08h27m49s	08h27m51s	08h27m52s	08h27m53s	SPCm/ZURO	08h27m56s	08h27m57s	08h27m58s	08h27m59s	08h28m01s	08h28m02s	08h28m03s	08h28m04s	080282082	0.040200025	08h28m08s

Stern Thruster

ţ,	SL	St	s of	ν w υτ	s U U U	St	N N N L	St	St St	0 0 1 1	0 U U U U	St	St	S C L	N U	7 7 7 7	S C	St	St	St.	200	0 0 7 1	2 5	SC SC	St	St	St	ST	υ γ Γι Τ		SC	St	St	S S	0 0 1 1	0 U U U	S C L	St	S C L	St St	υ u T T	0 tr	ST ST	St	S C	St	st vt	0 1 1	D U	st' St'	St
Ston	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
57	56	56	200	900	57	56	57 -	57	57	1.0	57	56	56	56	50 1 1	- L L	56	56	56	56	10	- u 0 U	200	20	56	56	56	50	00	57	57	57 [56	 9 I 1	- u u u u	20	56	56	56	57	0 1	22	57	57	57	57	57	57	- L L	56	56
- 40	-40	-40	-40	-40	-40	-40	-40	-40	-40	- 40	-40	-40	-40	-40	-40	07-	-40	-40	-40	-40	-40	- 40	-40	-40	-40	-40	-40	04-	-40	-40	-40	-40	-40	-40	- 40	-40	-40	-40	-40	- 40	04-	-40	- 40	-40	-40	-40	-40	-40	-40	-40	-40
0	0	0	00		0	00	00	0	00	 > c	00	0	0	0 0			0	0	0	00			00	0	0	0	0			0	0	0	0		 > c	00	0	0	0			00	0	0	0	0	0 0	00		, o	0
0	0	0	00	00	0	0 0	00	0	00		00	0	0	0 0			0	0	0	0 0			00	0	0	0	0 0			00	0	0	0 0			00	0	0	0	00		0	0	0	0	0	00			0	0
269	261	261	256	252	252	244	240	240	236	225	227	224	224	219	1 110	211	207	207	204	204	002	191	191	187	187	183	183	1 7 E	171	171	167	167	159	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		151	151	144	144	139	1 25 1	135	131	131	124	124	120	116	116	109	109
7.01	6.5	6.5	6.5	0.0	6.5	6.0	0.9	6.0	6.0	0.0	6.0	6.0	6.0	ດ.ບ ເ	ם ח ח ח	2 10	5.5	5.5	5.5		0 u	2 10	5	5.5	5.5	5.5	<u>د</u> م	0 C	5.5	5.5	5.5	5.5	ທີ່ ທີ່	ה ט ח	0 v	5.0	5.0	5.0	2.0	5.0 0		5.0	5.0	5.0	2.0	0.0	0.0	0 C	0.0	2.0	5.0
2.0	1.0	0.1	0 0 0 0	-0.0-	-0.0	-1.0	-1.5	-1.5	-1.5	0.4- 	-2.5	-2.5	-2.5	0.0	ν.	р. с. - с.	-4.0	-4.0	-4.0	-4.0	0.4 4	- 4 - 1 - 1	14.5	-5.0	-5.0	-5.0	0.0	ວ c ດ ແ 	- 2.0	-5.0	-5.0	-5.0	-5.0	0 u 0 u	0 C	-5.0	-5.0	-5.0	0 I 9 I	- 4 - 7 - 1	, 4 , 4	-4.5	-4.5	-4.5	-4.0	-4.0	-4.0	-4.0	-4.0	- 3 - 5	-3.5
-5.0	-5.0	0.0 		- 10.0	-5.0	0.0' 0.0'	- 5.0	-5.0	- 2 - 2 - 0	0 C	-5.0	-5.0	-5.0	- 2 - 2 - 0	0 C	-5.0	-5.0	-5.0	-5.0	- 5 - 5 - 6		- 5.0	-5.0	-5.0	-5.0	-0.0	0.0-		-0.0	-0.0	-0.0	-0.0	-0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0 10	0.u	ດ ດີ 1	0 c	5.0	5.0	5.0
08h28m09s	08h28m10s	08h28m11s	021787U80	08h28m14s	08h28m15s	08h28m16s	08h28m18s	08h28m19s	08h28m20s	08h28m22s	08h28m23s	08h28m24s	08h28m25s	08h28m26s	08h28m2/s	08h28m29s	08h28m30s	08h28m31s	08h28m32s	UShZ8m33S	08h28m35s	08h28m36s	08h28m37s	08h28m38s	08h28m39s	08h28m40s	08h28m41s	08h28m425	08h28m44s	08h28m45s	08h28m46s	08h28m47s	08h28m48s	U d l 1 2 0 m 4 9 S	08h28m51s	08h28m52s	08h28m53s	08h28m54s	08h28m55s	U8D28m555	08h28m58s	08h28m59s	08h29m00s	08h29m01s	08h29m02s	08h29m03s	U8D29m04s	scomeznau scomeznan	08h29m07s	08h29m08s	08h29m09s

: Turning Circles A, 2, l: 1- No current : 2010-05-03 - 08h21m11s : 6 Session: Name : trajecto j3p 3-05-10 Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Normandie Sequences : Normandie Start : 5 Stop Stop Students Notes: a 30 degrés lancé à 10 noeuds

Starboard Pod	Angle	359	359	360	360	359	359	358	358	360	360	0	0	360	360	ה ה היי	20 20 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1	555	070	0000	070	328	328	326	326	328	328	327	327	328	328	328	328	328	328	327	327	326	326	327	327	327
Starboard Pod	RPM rpm	75	75	75	75	75	75	75	75	74	74	0	0	75	۲. ۲.	0 L	0 1	01	0	01		0/1	0 1	0 1	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
Portside Pod	Angle	-1	- -	0	0	0	0	1.	-1	-1		0	0	0	, C	-1 r					0 C C C C C C C C C C C C C C C C C C C	0 C C C C C C C C C C C C C C C C C C C		0 CC 0 CC 0 CC		333	331	331	333	333	333	333	331	331	333	333	332	332	332	332	332	332	333	333	333
Portside	RPM	69	69	10	70	10	70	69	69	70	102	0	0	10	0/					500	200	0 4		0.5	69	69	70	70	70	70	69	69	102	102	11	11	70	70	102	10	11	11	70	70	102
Bow Thruster		Stop	LeftStro	LettStro	Stop	Stop	stop	aron	acob	done	stop	stop	stop stop	Stop Stop	ston	Stop																													
Wind Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0 0				00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind Speed	kts	0	0	0	0	0	0	0	0	0	0	0	0	0			 								00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heading	• •	13	13	12	12	12	12	12	12	13	13	0	0	12	7	7 C	7 C	1 1	1 1		V V T F	7 T	r 4		61	19	22	22	30	30	34	34	38	38	46	46	52	52	56	56	65	65	69	69	74
~		10.01	10.0	10.0	10.01	10.01	10.0	10.01	10.01	10.5	10.5	0.0	0.0	10.01	0.01										10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.0	9.0	8.5	8.5	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	1.0
Ţ	knots	9.5	9.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	0.0	0.0	10.0	0.01								0 U 0 0	ים היס	9.0	9.5	9.5	9.5	8.5	8.S	8.0	8.0	8.0	8.0	7.0	7.0	6.0	6.0	5.5	5.5	4.5	4.5	4.0	4.0	з . Б
٦Ŋ		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	0.7	0.0	0.0	2 C	0 c n u	5 c n u				o c	0 C	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Time	HHMMmSSs	09403m08s	09h03m09s	09h03m10s	09h03m11s	09h03m12s	09h03m13s	09h03m14s	09h03m15s	09h03m16s	09h03m17s	09h03m18s	Seine one of	09h03m20s	STZW200400	SZZIIICOITEO	SCANCOROO	0.0100m245	SCANCOROO	20700000000000000000000000000000000000	S Z WEOTTOO	802m201100	09003m30c	SUCONCOLLO	09h03m32s	09h03m33s	09h03m34s	09h03m35s	09h03m36s	09h03m37s	09h03m38s	09h03m39s	09h03m40s	09h03m41s	09h03m42s	09h03m43s	09h03m44s	09h03m45s	09h03m46s	09h03m47s	09h03m48s	09h03m49s	09h03m50s	09h03m51s	09h03m52s
H	1																																												

									_	_	_	_	_		_			_													_					_								_	_			_			_								
75		1 1	10	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	76	76	75	75	75	75	75	75	52	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	n o
122	100	100	222	222	232	332	332	332	332	331	331	333	333	330	330	332	332	332	332	331	331	331	331	331	331	333	333	332	332	332	332	331	331	332	332	333	333	334	334	331	331	331	331	331	331	331	331	332	332	332	332	332	332	332	332	0	0	 	00
102	0.1	11	12	112	12	70	70	70	20	11	11	71	71	70	70	71	71	70	70	11	71	70	70	70	70	70	70	70	70	70	70	70	70	70	70	71	11	70	70	71	71	70	70	10	10	70	70	11	71	70	102	70	20	10	102	70	70	0.7	0
SFON	Stop	SFOD	SFOD	Ston	Stop	Stop	Stop	Stop	Stop	Stop	LeftStro																																																
c		C) C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0		
_ C		c	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0 0	 	> 0
237	720	244	244	248	248	251	251	258	258	262	262	265	265	272	272]	276	276	280	280	287	287	291	291	294	294	301	301	305	305	308	308	314	314	318	318	321	321	327	327 [331	331	334	334	338	338	345	345	349	349	353	353	359	359	m (m	-			20
4.5	с P	6.5	4.5	4.5	4.5	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4 5	4. v	4. v.	4.0	4.0	0.4	4, 4 U U	0.0
- 3.5	י ה ר	-3.5	-3.5	-3.5	13.5	-3.0	-3.0	-2.5	-2.5	-2.5	-2.5	-2.0	-2.0	-1.5	-1.5	-1.5	-1.5	-1.0	-1.0	-0.5	-0.5	0.0	0.0	0.5	0.5	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.5	3.5	а.5 С	3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.4 4	0.0
-5.0	0 5 1	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	- 2.0	- 2.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0-	0.0-	0.0-	0.0-	0.0-	0.0-	- -		0.0
09h04m54s	09h04m55s	09h04m56s	09h04m57s	09h04m58s	09h04m59s	09h05m00s	09h05m01s	09h05m02s	09h05m03s	09h05m04s	09h05m05s	090050068	09h05m07s	09h05m08s	09h05m09s	09h05m10s	09h05m11s	09h05m12s	09h05m13s	09h05m14s	09h05m15s	09h05m16s	09h05m17s	09h05m18s	09h05m19s	09h05m20s	09h05m21s	09h05m22s	09h05m23s	09h05m24s	09h05m25s	09h05m26s	09h05m27s	09h05m28s	09h05m29s	09h05m30s	09h05m31s	09h05m32s	09h05m33s	09h05m34s	09h05m35s	09h05m36s	09h05m37s	09h05m38s	09h05m39s	09h05m40s	09h05m41s	09h05m42s	09h05m43s	09h05m44s	09h05m45s	090050468	S/ FMCOULEN	0.91105m48S	09h05m49s	09h05m50s	SICMEDURU	SZCIIICOIICO	09h05m54s

: Turning Circles Ar3 J : 1- No current : 2010-05-03 - 08h21m11s : 8 Session: Name : trajecto j3p 3-05-10 Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Normandie Sequence Tracks : Normandie Sequence State Students Notes: Notes: Pod babord (extérieur) à 325degrés lancé à 10 noeuds

starboard	Pod	°	22	22	17	17	359	359	357	357	359	359	359	359	359	359	71	71	360	360	361	361	358	358	358	358	358	358	0	0	359	359	358	358	360	360	358	358	360	360	359	359	360	360	358	358	360
Starboard	DOY	mgr	73	73	73	73	73	73	73	73	74	74	73	73	74	74	73	73	73	73	72	72	- -		- 2	ل ا	- 9	-9	0	0	_ 1-1	_ ب ۱	ı ۱	- 5	ິ - -	_ - ک	د ۱	ے ا	ц Ч	<u>ر</u> ک	ے ا	-5	9-	- 6	9-	- 9	- ی ا
Portside	DO4	o at firty	0	0	-1-	1-1	0-	0-	-1	-1	-1-	-1-	0	0	-1-	-1	0	0		-1-	-2	- 2	333	333	332	332	333	333	0	0	332	332	333	333	331	331	332	332	332	332	332	332	331	331	332	332	333
Portside	DO4	mqr	72	72	11	11	71	71	72	72	11	11	TL	11	11	71	11	11	71	11	71	71	73	73	17	LL	79	19	0	0	80	80	77	<i>LL</i>	72	72	73	73	73	73	73	73	73	73	73	73	73
BOW	Luruscer		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	LeftStro	LeftStro	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop												
Wind	DIFECTION	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mind	speed	kts	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heading		0	14	14	14	14	14	14	14	14	14	14	14	14	13	13	14	14	14	14	14	14	14	14	15	15	15	15	0	0	19	19	25	25	28	28	31	31	38	38	41	41	45	45	51	51	55
	>		10.0	10.0	10.0	10.01	10.01	10.01	10.01	10.0	10.0	10.0	10.0	10.01	10.01	10.01	10.01	10.0	10.5	10.5	10.0	10.0	10.5	10.5	10.0	10.0	10.0	10.0	0.0	0.0	о 0	о. С	9.5	9.5	0.6	9.0	0.6	0.6	8.5	8.5	8.5	8.5	8.0	8.0	7.5	7.5	7.5
ļ	TA	knots	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	و ت	9.5	9.9 7.1	9.5	5. 1. 1.	6.5	10.0	10.0	10.0	10.0	10.0	10.0	9.5 0	9.5	9.0	9.5	0.0	0.0	9.0	9.0	9.0	0.6	8.0 8	8.5	8.0	8.0	7.5	7.5	7.0	7.0	6.5	6.5	5.5	ۍ ک	5.5
ł	٨P		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0 .0	5.0	ъ. 0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	5.0	0.0	0.0	5.0	5.0	5.0	5.0	5.0	0. 0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
 i	alliti	HHMMMSSs	09h11m38s	09h11m39s	09h11m40s	09h11m41s	09h11m42s	09h11m43s	09h11m44s	09h11m45s	09h11m46s	09hllm47s	09h11m48s	09n11m49s	SUGMITU60	09hIIm51s	SZGWTTUG0	09hllm53s	09hllm54s	09h11m55s	09h11m56s	09h11m57s	09h11m58s	09h11m59s	09h12m00s	09h12m01s	09h12m02s	09h12m03s	09h12m04s	09h12m05s	09h12m06s	09h12m07s	09h12m08s	09h12m09s	09h12m10s	09h12ml1s	09h12m12s	09h12m13s	09h12m14s	09h12m15s	09h12m16s	09h12m17s	09h12m18s	09h12m19s	09h12m20s	09h12m21s	09h12m22s
E	-	1																																													

c	> c					0	0	0	0	0		1	0	0	0	0	c								-			0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	L L	 	0	0 7
1155	100			200	155	331	331	331	332	332	332	332	333	333	330	330	025	000	1.55	100	100	100	100	200	332	127	155	155	131	333	333	331	331	332	332	332	332	333	333	332	332	331	331	332	332	331	331	332	332	333	333	331	331	331	331	331	331	332	332	332	332 331
13		10		0.1	. · ·	1.5	73	73	73	73	73	73	73	73	73	73	٤٢	66	0.1	12	100	0.1		0.5	υ, I	n (1	n 1	13	13	13	73	73	73	72	72	73	73	73	73	72	72	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73
Ston	840P	Stop	100	3 top	acop	Stop	Ston	Stop	SFOR	aton	arop	acop atop	arop	done cron	acop	scop	scop	scop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop Stop										
					o	0	0	0	0	0	0	0	0	0	0	0										 > c		 > c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
						0	0	0	0	0	0	0	0	0	0	0	C									0 0			0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
175	175	178	011		1 OOF	1 ORT	186	186	188	188	191	191	196	196	199	199	202	202	202	202	010	010	010	1 1 1 0	717	812	812	022	077	223	223	228	228	231	231	234	234	239	239	242	242	244	244	250	250	252	252	255	255	259	259	263	263	266	266	268	268	273	273	276	276 278
۲ 10) u		0.1	0.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0	5.0	5.0	5.0	5.0	с v				<u>ה</u> ה	ר כ ר ר	о с и и	0.0	0.0	0.0	0.0	0. u	0.4	2.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0]	5.0]	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0
-5.0	C		n u		0. L	0.01	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0		5.6-	с. 4 - С. 4 -) < 		0 L	0 L **		1 4 4 U L	14. V.	-4.5 0.1	-4.5	-4.0	-4.0	-4.0	-4.0	-4.0	-4.0	-3.5	-3.5	-3.5	-3.5	-3.0	-3.0	-3.0	-3.0	-2.5	-2.5	-2.5	-2.5	-2.0	-2.0	-2.0	-2.0	-1.5	-1.5	-1.0	-1.0	-1.0	-1.0	-0.5	-0.5
0.0		0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0 0 -	0.0-	0.0-							0.01	0.0-	0.0-	1 1 1 1	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0
09h13m24s	09113m25s	09h13m26s	00012000	0.041 2m200	20711CT1160	SAZMETURU	SUEmeine0	U9h13m31s	09h13m32s	SEEmerneo	09h13m34s	09h13m35s	09h13m36s	09h13m37s	09h13m38s	09h13m39s	09h13m40s	09h13m41s	09h13m42s	09h13m43c	SCEMCTICO	STEMPTICO	SCEMCTICO	SOFWELLO	S/ #INCTITCO	0011200402	10111311498	SUCHETTIEU	STGMETUAN	SZGWEIUAD	09h13m53s	09h13m54s	09h13m55s	09h13m56s	09h13m57s	09h13m58s	09h13m59s	09h14m00s	09h14m01s	09h14m02s	09h14m03s	09h14m04s	09h14m05s	09h14m06s	09h14m07s	09h14m08s	09h14m09s	09h14m10s	09h14m11s	09h14m12s	09h14m13s	09h14m14s	09h14m15s	09h14m16s	09h14m17s	09h14m18s	09h14m19s	09h14m20s	09h14m21s	09h14m22s	09h14m23s 09h14m24s

360	360	358	358	359	359	328	328	328	328	328	328
	Ч	0	0	0	0	65	59	59	59	60	60
331	331	332	332	331	331	331	331	330	330	281	281
73	73	73	73	73	73	73	73	73	73	37	37
Stop											
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
11	11	13	13	15	15	20	20	23	23	26	26
4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
-0.0	-0.0-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
09h15m22s	09h15m23s	09h15m24s	09h15m25s	09h15m26s	09h15m27s	09h15m28s	09h15m29s	09h15m30s	09h15m31s	09h15m32s	09h15m33s

: Turning Circles \mathcal{A}_{e} 3, 2 : 1- No current : 2010-05-03 - 08h21m11s : t10

Starboard Pod	° angre	360	360	000	0 0 0 0	359	359	358	358	360	360	349	349	2000	360	360	334	334	328	328	327	327	327	327	328	328	328	525	070	222	327	328	328	327	327	328	328	327	327	328	328	328	240
Starboard Pod	mdr mdr	74	74	14	74	74	74	74	74	74	74	/4	74 74	74	74	74	74	74	74	74	73	73	74	74	74	74	44	1 4	* ~ ~	72	74	74	74	74	74	74	74	74	74	74	74	74	- F.
Portside Pod	o	-1-	00			0	0	01	0 -	7		0		+	4 0	0	1-	-1	0-	0-	-1	н	0-	0-	-1	-1	0 0			+ C 	0-	-27	-2	0	0	1-	н 1	Ľ,	I,	0-	0,	75	1
Portside Pod	mdr mdr	72	72	21	72	72	72	72	72	72	72	13	5/	22	72	72	0	5	0-	0 -	0-	0-	-1-	-1-	0-	0-	0 0		 	4 r . 1		0	0	0-	0-	0	0	0-	0-	-1-	-1 '	00	- >
Bow Thruster		stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	arop ton	arop aron	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	- 4000
Wind Direction	0	0	00		00	0	0	0	0	0	00				0 0	0	0	0	0	0	0	0	0	0	0	0	0 0				0	0	0	0	0	0	0	0	0	0	0	00	- >
Wind Speed	kts	- 0	00		> 0	0	0	0	0	0	00	5 0			0	0	0	0	0	0	0	0	0	0	0	0	00				0	0	0	0	0	0	0	0	0	0	0	00	- >
Heading	0	13	14	n t 7 ⊢		13	13	13	13	13	13	77	12	1 0	12	12	12	12	12	12	12	12	14	14	16	16	17		22	201	25	28	28	34	34	37	37	40	40	46	46	000	>>>
>		9.5	10.01		10.01	10.0	10.01	10.01	10.01	10.0I	10.01	0.01	10.01	10.01	10.01	10.01	10.5	10.5	10.5	10.5	10.0	10.01	9.5	9.5	9.0	6.0	5 G	0.0	000	0.00	8.5	8.5	8.5	8.0	8.0	7.5	7.5	7.5	7.5	2.0	2.0	0.2	->
VT	knots	9.5	ດ ດີ	ο υ ο σ	5.0	9.5	9.5	9.5	9.5	9.5	ი. ი.	0 1 0 0	2 C	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.0	0.6	0.0	0 0	ο α	0.8	8.0	8.0	8.0	7.5	7.5	7.0	0.7	6.5	6.5	5.5	5.5	ი ი ი ი	2
AL		5.0	0.0 0.0	0 C	0.0	5.0	5.0	5.0	5.0	5.0	0 0 0 0	0.1	ວດ ທີ່ທີ່	0.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0 C	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0 0.0	2
Time	HHMMMSSS	09h20m55s	09h20m56s	S/ CIIIO2TICO	09h20m59s	09h21m00s	09h21m01s	09h21m02s	09h21m03s	09h21m04s	09h21m05s	SOUTZIEU	09h21m08s	09h21m09s	09h21m10s	09h21m11s	09h21m12s	09h21m13s	09h21m14s	09h21m15s	09h21m16s	09h21m17s	09h21m18s	09h21m19s	09h21m20s	09h21m21s	09h21m22s	20211121100	09h21m25s	09h21m26s	09h21m27s	09h21m28s	09h21m29s	09h21m30s	09h21m31s	09h21m32s	09h21m33s	09h21m34s	09h21m35s	09h21m36s	09h21m37s	09h21m38s	
E		t .																																									

											_		_													_																							_	_	_					
73	VL		ť .	7 4	# < - C	14	74	74	74	74	74	74	74	74	74	74	74	74	74	74		74	+ t	41	14	14	74	74	74	74	74	74	74	74	74	47	41	74	74	74	74	74	74	4, 1	41	74	74	75	75	74	74	74	74	1 4	47	74
0	. 7	1 -	c 	N C	V		1 1	1-	0	0	-1	-1-	-1-	-1	0	0	12	<u>م</u>				 	7 1	 		10	2 2	01	0	-1	-1-	-2	- 2	0 -	0,0			1 -	1	-1			0 0					0	0 -	- 1-	-1	-1-	Ļ.	 		1 2 -
0-	 I						0	0-		- T -	0-	0 -	-1-	- 1	0	0	0	0	0	0 0	0	0 7	7 -				0	0-	0	0-	0 -	0 -	0-	0	0,				0	0 -	0-	0		(> -		0	0	0 -	0-	0-	0,	 		 > 0-
Stop	0 t 0 t	4040	Stop	stop	stop	STOD	Stop	Stop	Stop	dole	stop 1	310P	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	stop	Stop	Stop	Stop	Stop	Stop	stop	scop	SFOD	STOP -	Stop	acop 2+op	stop																				
0							0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	o				0	0	0	0	0	0	0	0	0 0			0 0	0	0	0	0						0	0	0	0	0	0 0	 > c		0
0		 > C	-	0 0			00	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0	 > c				00	0	0	0	0	0	0	0	0 0	20			0	0	0	0	00	-		 > C	00	0	0	0	0	0	0 0	 > c		> 0
173	176	344	001		701	981	188	188	191	191	194	194	200	200	203	203	205	205	211	211	214	214	117	177	522	525	225	228	228	234	234	237	237	239	239	242	010	248	251	251	256	256	259	202	1 192	268	268	270	270	274	274	279	279	727	101	285
3.01		0.0	0.0	0.0		0.0	2.2	2.5	3.0	3.0	2.5	2.5	2.5	2.5	2.5	2.5	2.2	2.2	2.2	0.1	n. 1	0 1 0 1	0 1	0 U	2 U	10	2.2	2.5	2.5	2.5	2.5	2.5	2.5	2.2	5.0	n 10	0 10	20.0	2.5	2.5	2.5	5.0	0 L	N (0.0	10	2.5	2.5	2.5	2.5	2.5	2.5	5.0	0.1	о и С и	5.0
-2.5		и 1 с 1	0 LL 1 C	10.0	1 C I	10,0	-2.5	-2.5	-3.0	-3.0	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	- 7 - 7	1 N N	. 1 . 1 . 1	0 L 1 (0 U 1 V 1 V	1 1 1	1 1 1 1 1 1 1	12.5	-2.5	-2.5	-2.0	-2.0	-2.0	-2.0	-2.0	- 2.0	0.2-	0.0	-2.0	-1.5	-1.5	-1.5	-1.5		0 L 		-1-0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	0.L 1.	- - - - -	0 U	10.0
0.0				0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	0.0-	0.0-	0.0-		0.0-		-0.0	-0.0-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0-	-0.0	0.0-	0.0-		-0.0	-0.0	-0.0	-0.0-	-0.0-	0.0-			-0.0	0.0-	-0.0	-0.0	-0.0	-0.0-	-0.0	0.0)))		0.0-
09h22m41s	aChmccdpc	0 gh 2 m 2 m 2 m	SC PINZZIICO	00000004Ec	ac Emissillo	S05m22m20	09h22m48s	09h22m49s	09h22m50s	09h22m51s	09h22m52s	09h22m53s	09h22m54s	09h22m55s	09h22m56s	09h22m57s	09h22m58s	09h22m59s	09h23m00s	09h23m01s	091-23002S	0.9h23m03s	0.0112.01104.8	090230066	09h73m07c	09h23m08s	09h23m09s	09h23m10s	09h23m11s	09h23m12s	09h23m13s	09h23m14s	09h23m15s	09h23m16s	09h23m17s	00122m102	0 Gh23m20e	09h23m21s	09h23m22s	09h23m23s	09h23m24s	09h23m25s	097723m268	S/ ZINCZIIGO	0910311295	09h23m30s	09h23m31s	09h23m32s	09h23m33s	09h23m34s	09h23m35s	09h23m36s	09h23m37s	USDZ3M388	000020000	09h23m41s

: Turning Circles $\bigwedge_{c} \mathcal{H}_{*}$: 1- No current : 2010-05-03 - 08h21m11s : 4 Session: Name : 2010-05-03 - 08h20m295 - Lundi AM Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSBLARD Sequence: Tracks : Normandie Sequence Start : 3 Stop Students Notes: pods à 340 degrés vitesse initiale 10 noeuds

Starboard	Angle		358	358	360	360	14	14	358	358	360	360	360	360	358	358	360	360	359	359	339	339	338	338	339	339	337	337	339	339	339	339	339	666	339	339	338	338	339	339	339	339	339	339	339	339	339
Starboard	RPM		75	75	75	75	76	76	75	75	74	74	73	73	74	74	74	74	74	74	73	73	74	74	74	74	74	74	73	73	74	74	73	73	74	74	73	73	74	74	74	74	74	74	74	74	73
Portside	Angle		-1-	1.		Η 1	01	01	0	0	0	0	0.	01	0	0	-1		-	1-	350	350	349	349	348	348	350	350	349	349	350	350	349	349	348	348	348	348	348	348	348	348	348	348	348	348	347
Portside	RPM		72	72	72	72	72	72	72	72	11	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72	21	21.	72	72	72	72	72	72	72	72	72	72	72	12
Bow	Tanana I	• + •	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop																														
Wind	0	· + ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1 0
Wind	kts 1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	о (0	0	0	0	0	0	0	0	0	0	0	0	0
Heading	0		14	14	14	14	15	15	15	15	72	15	14	14	14	14	15	15	14	14	15	12	16	16	17	17	20	20	23	23	26	26	2.9	2.4	50	35	39	39	42	42	49	49	53	53	57	57	64
	• •		10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	0.01	0.01	10.01	0.01	10.01	10.01	9.5	9.5	9.5	9.5	0.6	0.6	8.5	8.0	اد.8
171	knots		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	6 6	۰.5 ۲	ע ני	ע. חים	ο. ο	2 2	8.5	8°2	8.0	8.0	7.0	7.0	6.5	6.5	6.0	6.0	0.4
μ	2		5.0	0.0 	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0 1	0.0 1	0.1 1	0.0 0.0	0 . 0	0. u	0. U	5.0	2.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	5.U
dan it	HHhMMmSSs		08h53m00s	08h53m0ls	08h53m02s	08h53m03s	08h53m04s	08h53m05s	08h53m06s	08h53m07s	08h53m08s	08h53m09s	08h53m10s	08h53m11s	08h53m12s	08h53m13s	08h53m14s	08h53m15s	08h53m16s	08h53m17s	08h53m18s	08h53m19s	08h53m20s	08h53m21s	08h53m22s	08h53m23s	08h53m24s	08h53m25s	08h53m26s	08h53m27s	08h53m28s	08h53m29s	080530305	08D53m3LS	08/22/22/28	0805305355	08h53m34s	08h53m35s	08h53m36s	08h53m37s	08h53m38s	08h53m39s	08h53m40s	08h53m41s	08h53m42s	08h53m43s	08n53m44s
F	•	а.																																													

339	339	339	339	341	341	338	2 C C C C	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	339	339	338	338	0	0 0	ט ה ס ט ע ס ט ע	n C 1	o c	338	338	338	338	8 0 0 0 0 0	2000	000 000	000	339	341	341	340	340	955	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	340	5 6 M M	339	338	338	338	000	666	339	339	337	337	340	340	040	540	339	337	337	340	340 339
73	73	74	74	74	74	74	4/	73	73	73	74	74	0	0	14/	# C	0 0	74	74	74	74	74	14	14	52	73	74	74	74	74	73	2 / C	74	74	74	74	74	73	01	74	74	74	73	73	74	4L CL	10	74	74	74	74	74	74
348	348	348	348	347	347	348	348	349	347	347	349	349	0	0,0	348	040		347	347	347	347	348	540	940	348	348	348	348	347	347	348	348	348	946	349	348	348	348	346	346	348	348	348	348	348	348	070	348	348	347	347	347	347 348
72	72	72	72	72	72	72	77	12	72	72	72	72	0	0 (21	ų C	0	72	72	72	72	72	7	41	72	72	72	72	72	72	21	7/	12	72	72	72	72	72	100	72	72	72	72	72	72	121	21	72	72	73	73	72	72
Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	LeftStro	LettStro	stop	I.eft.Stro	LeftStro	Stop	Stop	Stop	Stop	Stop	stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	stop	ston	Stop	Stop	Stop	Stop	Stop	stop stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop Stop	stop stop	Stop	Stop	Stop	Stop	Stop	Stop Stop
0	0	0	0	0	0	0 0		00	0	0	0	0	0	0 0			0	0	0	0	0	0 0				0	0	0	0	0 0	0 0		00	00	0	0	0	00		0	0	0	0	0	0 0	00		00	0	0	0	0	00
0	0	0	0	0	0	0 0		00	0	0	0	0	0	0 0			0	0	0	0	0	0 0			0	0	0	0	0	0 0				00	0	0	0			0	0	0	0	0	0 0			00	0	0	0	0	00
217	217	220	220	224	224	231	152	235	239	239	243	243	0	0 1	251	107	0	258	258	263	263	270	012	273	277	277	284	284	288	288	292	202	295	302	302	306	306	309	316	316	320	320	323	323	331	155	1 466	337	337	344	344	348	348
6.0	6.0	6.5	6.5	6.0	6.0	0.9	0.0	0.0	6.0	6.0	5.5 .5	5.5	0.0	0.0	0.0	0.0	0.0	6.0	6.0	5.5	2.5		ה ע ה ע		2.0	5.5	6.0	6.0	6.0	0.1	ນ ມ ນ ມ	0 u	, n ,	5.5	5.5	5.5	ي. ۲	ע. ע.ע	າ ເ າ	5.5	5.5	5.5	5.5	5.5		ດ ແ ດ	ית הית	5.5	5.5	5.5	5.5	ດ.ບ ເ	5.5
- ۲ . ۲	-5.5	-5.5	-2.0	-5.0	-5.0	-4.5	1 1 1 1 1	-4.5	-4.0	-4.0	- 3. G	- 3.5	0.0	0.0	0.0	0.0	0.0	-2.5	-2.5	-2.0	-2.0			-1.0	-1.0	-1.0	-0.5	-0.5	0.0	0.0	0 C	0 C	1.0	1.5	1.5	2.0	2.0	0.0	0 C	3.0	3.0	3.0	3.5	3°2	4.0	4.0	0.4	4.5	4.5	4.5	4.5	0.0 1	0.0 0.0
-0.0	-0.0	-5.0	-5.0	-5.0	-5.0	- 2.0	0 C	-5.0	-5.0	-5.0	-5.0	-5.0	0.0	0.0	0.0 1.1	0.0	0.0	-5.0	-5.0	-5.0	- 2.0	 		- 5.0	-5.0	-5.0	-5.0	-5.0	-5.0	- 5.0	0. U 1 1		0 0 1	-5.0	-5.0	-5.0	-5.0	0.0 1 1		-5.0	-5.0	-5.0	-5.0	-5.0	- 5. U	0.0 1	0 C	-5.0	-5.0	-5.0	-5.0	0.0-	0.0-
08h54m46s	08h54m47s	08h54m48s	08h54m49s	08h54m50s	08h54m51s	08h54m52s	08h54m54a	08h54m55s	08h54m56s	08h54m57s	08h54m58s	08h54m59s	08h55m00s	SIUMCCUBU :	Concerno Se Onstantas	1 08h55m01s	! 08h55m02s	08h55m04s	08h55m05s	08h55m06s	08h55m07s	U8Dmccm80 S8Dmccm80	0.8h55m10s	08h55m11s	08h55m12s	08h55m13s	08h55m14s	08h55m15s	08h55m16s	08h55m17s	S8TMCCH80	O Sh55m20s	08h55m21s	08h55m22s	08h55m23s	08h55m24s	08h55m25s	Sozmeensu Dsheesmees	08h55m28s	08h55m29s	08h55m30s	08h55m31s	08h55m32s	08h55m33s	08h5m3d80	seemeenso	08h55m37s	08h55m38s	08h55m39s	08h55m40s	08h55m41s	08h55m42s	08h55m44s

: Turning Circles A.S.I : 1- No current Session: Name : 2010-05-03 - 08h20m29s - Lundi AM Lake Path : Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSBLARD Sequence: Tracks : Normandie Sequence Start : 1 Stop Stop Notes: Notes: pods à 350 degrés vitesse initiale 10 noeuds

: 2010-05-03 - 08h21m11s : 2

rboard	Angle	0	349	349	349	349	359	359	11	11	12	12	11	11	346	346	346	346	347	347	349	349	347	347	346	346	358	358	339	339	349	349	347	347	347	347	0	0	347	347	347	347	346	346	348	348	
tarboard Star	MDA	udu	74	74	74	74	75	75	75	75	67	67	67	67	67	67	67	67	68	68	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	0	0	67	67	67	67	67	67	67	67	A DECEMBER OF A
Portside S	Angle) o	358	358	358	358	0-	0-	18	18	15	15	17	17	351	351	352	352	351	351	359	359	357	357	356	356	1	Ч	353	353	353	353	350	350	349	349	0	0	351	351	350	350	350	350	350	350	and the second se
Portside	RPM	mdr	73	73	73	73	74	74	73	73	70	70	64	64	65	65	64	64	64	64	62	62	19	61	62	62	62	62	62	62	62	62	61	61	62	62	0	0	62	62	62	62	62	62	62	62	AND IN TRACES
Bow	TITTMACET		Stop	LeftStro	LeftStro	Stop	Stop	Stop	Stop	Stop	Stop]	Stop	Stop	· · · · · · · · · · · · · · · · · · ·																																	
Wind	TTOTTOTT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Wind	מהמכת	kts	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Heading		0	15	15	14	14	14	14	14	14	14	14	14	14	13	13	12	12	12	12	12	12	13	13	14	14	15	15	16	16	18	18	20	20	24	24	0	0	30	30	35	35	38	38	41	41	1.
1	>		11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.01	10.01	10.01	10.01	10.01	10.0	10.01	10.0	9.5	9.5	9.5	9.5	9.5	9.5	0.0	0.0	9.5	9.5	0.6	9.0	9.0	9.0	8.5	8.5	
171	T >	knots	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	0.6	0.6	0.0	0.0	8.5	8.5	8.0	8.0	8.0	8.0	7.5	7.5	L
111	2		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	5.0	ъ.0	5.0	0.0 0	5.0	0.0	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	L
		Hhhmmsss	08h38m42s	08h38m43s	08h38m44s	08h38m45s	08h38m46s	08h38m47s	08h38m48s	08h38m49s	08h38m50s	08h38m51s	08h38m52s	08h38m53s	08h38m54s	08h38m55s	08h38m56s	08h38m57s	08h38m58s	08h38m59s	08h39m00s	08h39m01s	08h39m02s	08h39m03s	08h39m04s	08h39m05s	08h39m06s	08h39m07s	08h39m08s	08h39m09s	08h39m10s	08h39m11s	08h39m12s	08h39m13s	08h39m14s	08h39m15s	! 08h39m16s	! 08h39m17s	08h39m18s	08h39m19s	08h39m20s	08h39m21s	08h39m22s	08h39m23s	08h39m24s	08h39m25s	

								20							22	-																																															
67	67	67	67	67	67			5	5	5		67	67	67	67	67	67	57			10	67	6.1	67	67	67	67	67	67	19		67	67	67	68	68	67	67	67	67	67	67	67	5	5	0					2	2	21	37	37	37	3.7	37	37	37	1.5	0 r 0 r	72
359	359	359	359	359	359		200		200		000	360	358	358	358	358	35.8	35.8			200	359	359	357	357	358	358	358	358			359	359	359	358	358	358	358	359	359	357	357	359	000		100 100	# 0 F	101				001	nn T	100	100	66	66	66	66	689	68	31	
62	62	62	62	61	61	63	100		20	4 0	70	62	62	62	61	61	62	62	4 4	20	70	62	62	62	62	61	61	62	62	62	1 0	62	61	61	62	62	62	62	62	62	62	62	62	62	4 0		20	20	20	4 6	70	70	79	63	63	62	62	62	62	62	29	1.9	74
Stop	Stop	Stop	Stop	Stop	Ston	CLON	Stop -	STOP 2	010h	5 LOP	done done	Stop	Stop	Stop	Stop	Stop	STOD	SFOD	SFOD	arop Croc	stop	STOD	arop arop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	100	stop stop	0100	87.0P	0000	0 L O P	done	arob	scop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop								
0	0	0	0	0	C							0	0	0	0	0	C	- c				0	0	0	0	0	0	0	c			 	0	0	0	0	0	0	0	0	0	0	c	c										0	0	0	0	0	0	0 0		 	
0	0	0	0	0	С							0	0	0	0	0	С	- C				0 4	0	0	0	0	0	0					0	0	0	0	0	0	0	0	0	0	С											0	0 1	0	0	0	0	0 0			> 0
156	156	160	160	163	163	165	1951	171		1 1 1		173	175	175	181	181	184	184		001	001	1 161	171	194	194	197 [197	203	203	205		502	208	208	213	213	216	216	219	219	224	224	2.2.7	700	000	000	000	020	224	C	102	407 407	402	233	233	231	731	225	225	222	777	812	211
6.5	6.5	6.5	6.5	7.0	7.0	0	0.0	0.2	0.1			و. ب ا	6.5	6.5	7.0	7.0	6.5	с v			- t	0.7	0.1	6.5	6.5	6.5	6.5	6.5	5	2		0 . 0 .	6.5 1	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.01	6.0	0.0	0.0		2 4	о и о и) U	0.0	0.0	0.1	2.0	0.1	0.4	0.4	c. 4	4.5	4.0	4.0	- T	4.0
-5.5	-5.5	-6.0	-6.0	-6.0	-6.0	u u) U		י ע י ו			-0.5 -	- 6 . 5	-6.5	-7.0	-7.0	- 6.5	ц С	0.0-			0.7-	0.1-	-6.5	-6.5	-6.5	-6.5	-6.0	-6.0	с с ч		0 0 0	0.0-	-6.0	- ۲. 5 -	- J. J.	-D.J	-5.5	-5.5	-5.5	-5.0	-5.0	-5.0	0.21		י ער י די די	5 V -	1 d - 1	1 1 1 1 1 1) U	0 C		0.01	-3.0	0.0	-3.0	- 1.0	6.2-	-2.5	- 2. c 7. r	- N - N	ן אינ עי	
5.0	5.0	5.0	5.0	5.0	5.0	ר ר	ວ⊂ ທີ່					0.0	0.0	0.0	0.0	0.0	0.0	0 0				0.0-	0.0-	-0.0-	-0.0	-0.0	-0.0-	-0.0-	0 0-	0		0.0 -	0.0	-0.0-	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5-0			- u -	0 5 1	0.021) 	0.0	0.1	-5.0	- 5. 0 0 . 1	- 5. C	0.6-	-5.0	-5.0	-5.0	- 0.0	1 0 0	- 10.0 - 10.0
08h40m28s	08h40m29s	08h40m30s	08h40m31s	08h40m32s	08h40m33s	08h40m34s	08h40m35s	08h40m36c	08h40m37s	C C C C C C C C C C C C C C C C C C C	SOCMONTOO	U8n4Um39S	08h40m40s	08h40m41s	08h40m42s	08h40m43s	08h40m44s	08h40m45s	08440m466	SOF MOVIOO	2 THOTTON	08n40m48S	USD4Um43S	08n40msus	08h40m51s	08h40m52s	08h40m53s	08h40m54s	08h40m55s	08h40m56s	0000000000000	08140m5/S/	08040m285	08h40m59s	08h41m00s	08h41m01s	08h41m02s	08h41m03s	08h41m04s	08h41m05s	08h41m06s	08h41m07s	08h41m08s	08h41m09s	00141440	SUTINITION SUTINITION	08h41m12c	08h41m13s	08h41m14c	0000111160	SCIMIFILOO	Solmitelloo	SI THIT FILOD	S8TMT4080	08h41m195	USN41m2US	USUST ST S	USD41m22S	08h41m23s	08h41m24s	SC2M14180	292m14180	08h41m28s

APPENDIX 5 – DETAILED RESULTS FOR STOPPING MANOEUVRES

: 2010-05-03 - 08h21m11s : t16 Session: Name : trajecto j3p 3-05-10 Lake Path : Uurrent Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Start : t15 Stop Stop Students Notes: Notes: Pods en ligne hélices stoppées vitesse 9.5 noeuds

Starboard	。 。	20	20	357	357	359	359	13	13	226	226	0	0	0	0	359	359	30	30	19	19	338	338	354	354	357	357	358	358	358	358	358	358	357	357	358	358	358	358	359	359	359	359	359	359	359
Starboard	rpm	14	74	74	74	74	74	74	74	74	74	0	0	0	0	74	74	75	75	74	74	75	75	75	75	75	75	64	64	0	0	0	0		г	0	0	0	0	0	0		г			0
Portside Pod	angle	-2	-2	0 -	0-	-1-	-1	0-	0 -	г	-1	0	0	0	0	-1	-1	-1-	-1	-1	-1	-1	-1	0	0	0	0	0-	0-	0	0	-1	-1	-1-	-1-	-1	1,	Ч		-2	-2	- 1	1	- 2	- 2	-1-
Portside	mdr	72	72	72	72	72	72	72	72	72	72	0	0	0	0	72	72	72	72	72	72	72	72	72	72	71	71	60	60	-1-	-1	4	4	4	4	4	4	0-	0-	0	0	0-	0-	0 -	0-	0-
Bow Thruster		stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	LeftStro	LeftStro	LeftStro	LeftStro	Stop																														
Wind Direction	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind Speed	kts	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heading	0	6	6	10	10	10	10	10	10	10	10	0	0	0	0	11	11	12	12	12	12	11	11	12	12	12	12	12	12	13	13	14	14	15	15	16	16	17	17	19	19	20	20	22	22	22
>		9.5	9.5	9.5	9.5	9.5	و. ت	9.5	9.5	9.5	9.5	0.0	0.0	0.0	0.0	10.0	10.0	10.0	10.0	10.01	10.01	10.01	10.0	10.01	10.0	10.0	10.01	10.01	10.0	10.0	10.0	9.5	6.5	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.0	8.0	7.5	7.5	7.5
Ţ	knots	9.5	9.5	9.5	9. D	ი ა ი	9.5	9.5	9.5	9.5	9.5	0.0	0.0	0.0	0.0	6.5	ა. ი	9.5	9.5	9.5	ი. ი	10.0	10.0	9.5	9.5	10.0	10.0	9.5	9.5	9.5	ъ. С	0.6	0.6	9.0	9.0	8.5	8.5	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	1.0
Л		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	5.0	5.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0
Time	Hhhmmsss	09h46m28s	09h46m29s	09h46m30s	09h46m31s	09h46m32s	09h46m33s	09h46m34s	09h46m35s	09h46m36s	09h46m37s	09h46m38s	09h46m39s	09h46m40s	09h46m41s	09h46m42s	09h46m43s	09h46m44s	09h46m45s	09h46m46s	09h46m47s	09h46m48s	09h46m49s	09h46m50s	09h46m51s	09h46m52s	09h46m53s	09h46m54s	09h46m55s	09h46m56s	09h46m57s	09h46m58s	09h46m59s	09h47m00s	09h47m01s	09h47m02s	09h47m03s	09h47m04s	09h47m05s	09h47m06s	09h47m07s	09h47m08s	09h47m09s	09h47m10s	09h47m11s	09n47m12s
E		6										-• -		-• •																																

•

0	0	0	0	Ч	1	Ч	Ч	0	0	0	0	Ч	Ч	0	0	0	0	0	0	0	0	0	0
0-	0-	-1	-1-	01	0-	1	L I	0,	0-	0-	0 -	0	0				Ľ,	0	0	1		0	0
0 -	0-	0 -	0-	- -		0	0	0-	0-	0-	0-	0-	0-	0-	0-	0-	0-	0-	0-	0	0	0 -	0 -
Stop																							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
75	75	77	177	19	79	80	80	81	81	82	82	84	84	85	85	86	86	87	87	89	89	06	06
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
09h48m14s	09h48m15s	09h48m16s	09h48m17s	09h48m18s	09h48m19s	09h48m20s	09h48m21s	09h48m22s	09h48m23s	09h48m24s	09h48m25s	09h48m26s	09h48m27s	09h48m28s	09h48m29s	09h48m30s	09h48m31s	09h48m32s	09h48m33s	09h48m34s	09h48m35s	09h48m36s	09h48m37s

: 2010-05-03 - 10h25m29s : fin crash stop 2 2, (,) : Turning Circles : 1- No current Session: Name : 2010-05-03 - 10h24m55s - Lundi AM Lake Path : Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSBLARD Sequence: Tracks : Normandie Start : début crash stop 2 Start : début crash stop 2 Start : Notes: Notes: Notes:

Starboard Pod	Angle	16	16	22	22	325	325	353	353	359	359	359	359	13	13	18	18	13	13	360	360	11	11	359	359	360	360	359	359	360	360	360	360	360	360	361	361	360	360	361	361	0	0	361	361	359
Starboard	RPM rpm	98	98	66	66	66	66	66	66	66	66	66	66	66	66	98	98	66	66	66	66	62	62	-17	-17	-57	-57	- 72	-72	-74	-74	-76	-76	- 78	- 78	- 82	- 82	-84	-84	- 85	- 85	0	0	- 92	- 92	- 74
Portside	Angle	1	Ч	0	0	0	0	01	0 -	0-	01	-1	- 1	0	0	0	0	-1	н) 1	0	0		-1	0	0	1,	 -	-1-		 -	- 1	0	0	01	01	-1		0	0	-1-		0	0	 	1	- - -
Portside	RPM rpm	97	97	97	97	97	97	97	52	97	97	97	97	97	97	67	6	16	102	97	97	61	61	-17	-17	-57	-57	- 72	- 72	- 73	- 73	- 76	- 76	- 78	- 78	-81	-81	- 83	- 83	- 85	- 85	0	0	- 90	06-	- 23 -
Bow		stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	LeftStro	LeftStro	Stop	Stop	Scop														
Wind Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	2
Wind Speed	kts	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	2
Heading	0	192	192	193	193	193	193	193	193	193	193	193	193	194	194	194	194	194	194	194	194	194	194	193	193	194]	194	194	194	194	194	194	194	195	195	195	195	195	195	196	196	0	0	198	198	1 777
>		13.0	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	14.0	14.0	13.51	13.5	13.5	13.5	14.0	14.0	14.0	14.0	13.0	13.0	12.0	12.0	11.5	11.5	11.0	11.0	10.5	10.5	10.01	10.0	9.5	9.5	0.6	0.6	0.0	0.0	7.0	0.7	10.0
TV	knots	-12.5	-12.5	-12.5	-12.5	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.5	-13.5	-13.0	-13.0	-13.0	-13.0	-13.5	-13.5	-13.5	-13.5	-12.5	-12.5	-11.5	-11.5	-11.0	-11.0	-10.5	-10.5	-10.5	-10.5	۰9. و-	-9.5	0.6-	-9.0	-9.0	0.6-	0.0	0.0	-7.0	0.6-	-0.0
ΔL		-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	- 2.0	- 5.0	- 5. 0 0 . 1	0. u	- 5. U	0.0.	0.2-	-5.0	- 2.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-2.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	0.0	0.0	-0.0	0.0-	0.0-
Time	SSSmMMHHH	10h50m30s	10h50m31s	10h50m32s	10h50m33s	10h50m34s	10h50m35s	10h50m36s	10h50m37s	10h50m38s	10h50m39s	10h50m40s	10hb0m41s	10h50m42s	LUNDUM43S	10h50m44s	SCEMOCUL	201-201-405	S/ Fmodul	LUNDUM48S	10h50m49s	10h50m50s	10h50m51s	10h50m52s	10h50m53s	10h50m54s	10h50m55s	10h50m56s	10h50m57s	10h50m58s	10h50m59s	10h51m00s	10h51m01s	10h51m02s	10h51m03s	10h51m04s	10h51m05s	10h51m06s	10h51m07s	10h51m08s	10h51m09s	10h51m10s	10h51m11s	10h51m12s	10h51m13s	1 STUTCIINT
E		-	_				-								-					-											_															-

2.1.2 : Turning Circles. : 1- No current Session: Name : 2010-05-03 - 10h24m55s - Lundi AM Lake Path : Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Start : début crash stop 1 Students Notes: Notes: Actop vitesse 13.5 noeuds pods zéro degré full negative

starboard Pod	Angle	737	2.2.2	338	338	361	361	360	360	361	361	360	360	ה ה ה ה	0 0 0 0 0	6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	360	360	361	361	359	359	360	360	361	361	359 359	202 202	LAC	361	361	359	359	361	361	361	361	360	360	359	359	361	361 361
Starboard Starboard	RPM rpm	+	66	86	98	66	66	99	66	66	66	66	- C	000	200	36	-37	-37	- 70	- 70	- 73	-73	- 75	-75	- 79	- 79	- 80	08-	- 82	-86	- 86	-89	- 89	-91	-91	-93	- 93	-95	-95	- 99	66-	198	- 98 -
Portside Pod	Angle	+		- -	-1	0 -	0-	-1-	-1	1,		00	0 0			ן הן י	0	0	0	0	-1	-1-	1		0	0,	 			0 -	0	1	1	0	0	-2	-2	-	1	-1-	-1	-1-	
Portside	RPM	1 26	16	57	97	97	97	97	97	97	97	1 20	- 10		34	34	-37	-37	- 70	- 70	- 72	-72	- 74	- 74	- 78	- 78	0 0 0	- 80		- 86	- 86	1 88	- 88	- 90	- 90	- 92	- 92	- 94	- 94	- 98	- 98	- 98	- 98 -
Bow Dow		Ston	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Wind Direction	0	+	- C	0	0	0	0	0	0	0	0	0 0	5 0			0	0	0	0	0	0	0	0	0	0	0 0	0 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
Wind Speed	kts	+		0	0	0	0	0	0	0	0	0 0				0	0	0	0	0	0	0	0	0	0	0 0	00) C	0	0	0	0	0	0	0	0	0	0	0	0	0	00
Heading	0	101	10	10	10	10	10	10	10	10	10	11			11	11	11	11	11	11	11	11	11		10	10			5	0	00	7	7	9	9	ۍ ا	ۍ ا	m	m	1	Ч	359	359
>		13.01	13.0	13.5	13.5	13.0	13.0	13.0	13.0	13.5	13.5	13.5	0.01	1 1 1	13.0	13.5	13.0	13.0	12.0	12.0	11.5	11.5	11.0	11.0	10.5	10.5	0.01	0.0	0 0	8.5	8.5	8.0	8.0	7.5	7.5	2.0	1.0	0.9	6.0	4.5	4.5	4.0	3.5
TV	knots	12.5	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.U	13.0	13.0	13.0	12.5	12.5	12.0	12.0	11.5	11.5	11.0	11.0	10.0	10.0	ກ ເ ດ	n u n o	6.0	8.5	8.5	8.0	8.0	7.5	7.5	1.0	7.0	6.0	6.0	4.5	4.5	4.0	9.9 0.0
٨L		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time	Hhhmmsss	10h46m40s	10h46m41s	10h46m42s	10h46m43s	10h46m44s	10h46m45s	10h46m46s	10h46m47s	10h46m48s	10h46m49s	10h46m50s	STGIIGHIDT	10h46m53s	10h46m54s	10h46m55s	10h46m56s	10h46m57s	10h46m58s	10h46m59s	10h47m00s	10h47m01s	10h47m02s	10h47m03s	10h47m04s	10h47m05s	104/1002	10h47m08s	10h47m09s	10h47m10s	10h47m11s	10h47m12s	10h47m13s	10h47m14s	10h47m15s	10h47m16s	10h47m17s	10h47m18s	10h47m19s	10h47m20s	10h47m21s	10h47m22s	10h47m24s

: Turning <u>Circles</u> : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake : Path : Current Current : Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Normandie Sequence : Sequence : Sequence : Stop 4 Stop Students : début crash stop 4 Stop 4 Stop Students : Notes: 14 noeuds pods 180 deg outboard full positive

Starboard Pod	。 。	360	360	360	360	360	200	360	359	359	359	50 N N N N	42.4	166	166	16	16	241	241	192	192	191	191	191	194	194	192	192	193	00T	192	191	191	190	190	192	192	192	192	191	191 192
Starboard Starboard	RPM rpm	66	66	66	66	000	άσ	0 00	66	66	66		66	66	66	98	98	66	66	66	66		00	66	66	66	98	98	- 66 6	n 0	5	66	66	99	66	98	98	66	66	66	66
Portside	Angle	0	0						- T-	-1-	0,0	010	330	179	179	179	179	180	180	178	1.18	1 78 1	641	179	178	178	178	178	1 8/ T	971	179	179	179	180	180	179	179	180	180	178	178 1
Portside Pod	MAR	97	97	97	- 10	10	10	57	97	97	97	0 1	16	16	57	97	16	97	54	52	1.5	12	16	57	97	97	97	52		10	16	97	97	97	97	96	96	97	97	97	16
Bow Thruster		Stop	Stop	Stop	Stop	stop stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	ston	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop Stop
Wind	0	0	0	0	 ວ ເ			0	0	0	00		> 0	0	0	0	0	0	0	0 0	0 0		0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0 0
Speed	kts	0	0	0				0	0	0	00		0	0	0	0	0	0	0	0 0	5 0		0	0	0	0	0	0 0			0	0	0	0	0	0	0	0	0	0	00
Heading	0	193	193	192	767	192	192	192	193	193	193	501 501	193	192	192	191	191	189	189	188	100	187 1	186	186	185	185	183	183	183	182	182	181	181	180	180	179	179	179	179	179	179
~		14.0	14.0	14.0	14.0	14 0	14.0	14.0	14.0	14.0	14.0	14.5	14.5	13.5	13.5	12.5	12.5	12.0	12.0	11.5	0.11	10.01	9.5	9.5	9.0	0.6	8.0	01	0.1	2.0	7.0	5.0	5.0	4.5	4.5	с. С	3.5	2.5	2.2	1.0	0.5
ŢŲ	knots	-13.5	-13.5	-13.5	10.01- 10.01	1.1.0.1	-13.5	-13.5	-14.0	-14.0	-14.0	0.11	-14.0	-13.0	-13.0	-12.0	-12.0	-11.5	G.11-	0.11-	0.11-	-10.0	-9.5	-9.5	-9.0	-9.0	0.0	0 L 20 T	0. 5	- 7.0	-7.0	-5.0	-5.0	-4.5	-4.5	- 3. S	-3.5	-2.5	-2.5	-1.0	0
٨L		-5.0	-5.0	0.0 	0.0 1		- 0.0	-5.0	-5.0	-5.0	0.0 1 1	р с п ш п	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	- 2.0	0.0-	0.0-	0.0-	-0.0	-0.0	-0.0	-0.0	0.0-	0.0	0.0-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0-	-0.0	-0.0	0.0-	0.0
Time	HHMMmSSs	111h00m50s	11h00m51s	11h00m52s	SECHOURTE	11h00m55s	11h00m56s	11h00m57s	11h00m58s	11h00m59s	11h01m00s	11h01m02s	11h01m03s	11h01m04s	11h01m05s	11h01m06s	11h01m07s	11101m08s	SADWIDUTI	SOTWIDUTI	STIMIOTITI	111h01m13s	11h01m14s	11h01m15s	11h01m16s	11h01m17s	11h01m18s	SATUTOUTT	alcminuttt	11h01m22s	11h01m23s	[11h01m24s]	11h01m25s	11h01m26s	11h01m27s	11h01m28s	11h01m29s	11h01m30s	11h01m31s	11h01m32s	11h01m34s

2.2.2 : Turning Circles : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake : T Path : Current : 1 Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence : Sequence : 5 Start : début crash stop 3 Students Notes: Notes: 13.5 noeuds pods 180 deg outboard full positive

: 2010-05-03 - 10h25m29s : fin crash stop 3

۰.,

Starboard Pod Angle		359	359	345	345	360	360	360	360	346	346	359	359	342	342	359	202	343	343	360	360	360	360	359	359	360	360	359	359	1./ T	117	040	264	264	193	193	192	192	193	193	192	192	191	191 193
Starboard Starboard Starboard	ndr	98	98	66	66	66	66	66	66	98	98	66	66	66	66	5 G	ר ע סית			55	69	66	66	66	66	66	66	66	66		00	1 0	66	66	100	100	66	66	66	66	98	98	66	- 66 66
Portside Pod Angle		-1-		0 -	0 -			0,	0 -	0 -	0-	-1	-	-	-	0 0		0 0	5 0	0 0	0	14	14	 	-	6	<u>თ</u>	-		TZZ	1601	160	133	133	186	186	186	186	186	186	187	187	186	186 186
Portside Pod RPM	mqr	97	97	97	97	97	97	97	97	97	97	67	97	16	1.6	- 10		9.0	970	1.0	1.5	1.6	97	16	1 16	16	16	1 16	- 10	01	10	- 16	16	97	97	97	97	97	97	97	97	97	97	1 16
Bow Thruster		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	acop	stop	scop	scop	stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	actop 6+00	stop stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop Stop
Wind Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0		 > c				 ວ ເ		0 0	0	0 0	0 1	0 0	0 0	0 0				0	0	0	0	0	0	0	0	0	0	0	0	 o o
Wind Speed	kts	0	0	0	0	0	0	0	0	0	0	0	0	0 1	5 0					5 0	 > 0	 ວ (0	0 0	0	0 0	0 0	0 0				0 0	0	0	0	0	0	0	0	0	0	0	0	 > 0
Heading	0	6	6	10	10	6	6	6	6	6	6	10	10	TO								77	12		21			21	71 0			<u>ה</u> ש	0	8	7	7	ى س	ъ	4	4	5	2	359	358 358
>		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.0	13.0	13.5	10.01 0	10.01		0.01	0.01	0.01 10.01	0.01	10.01 1	13.5T	10.51 1	14.5	1 	2.21	10.01	0.01	0.61	10.01	12.0	11.5	11.5	11.0	11.0	10.01	10.0	0.6	0.6	8.5	8.5	10.7	0.9
VT	knots	12.5	12.5	12.5	12.5	12.5	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	10.01	0.01	13.0	0.01 T	10.01	12.0	12.0	13.0	13.U	13.0	13.0	13.0	13.0	13.U	10.01	11 11 11	11.5	11.5	11.5	11.0	11.0	9.5	9.5	9.0	0.6	8.0	8.0	0.7	6.0
Ţ		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0,0 10,1	0.1 0.1	0 . 0	0.0	0 u) 	0.0	0 C	0 u	0.0	0 . C	0.1 0.1	0 0 0 0	0.0	0.0	0.0 0.0	0 c	0 C	о с о и	0.0	2.0	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time	HHMMmSSs	[10h56m20s]	10h56m21s	10h56m22s	10h56m23s	10h56m24s	10h56m25s	10h56m26s	10h56m27s	10h56m28s	10h56m29s	10h56m30s	SIEmocuoi	SZEMBCUUT	SCENECITUL	SPCIIIOPECTIOT	1 OPECADO	SOCIIIOCTIOT	S/ CINOCITOT	SOCUPACITOT	SECUIOCITOT	SUBIIIQCIIOT	ST&mesuor	S24M9CUUT	LUND6m4.3S	TUD56m44S	LUD56m45S	TOLICE AND ADD	S/ HUDGUOT	110h56m49c	10h56m50s	10h56m51s	10h56m52s	10h56m53s	10h56m54s	10h56m55s	10h56m56s	10h56m57s	10h56m58s	10h56m59s	10h57m00s	10h57m01s	10h57m02s	10h57m04s

2 3 / Eurning Circles : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake Dath : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Normandie Sequence Tracks : Normandie Sequence Start : début crash stop 6 Stop Students Notes: Normandie Notes 14 noeuds pods 180 deg inboard full positive

Starboard Pod	Angle	1 1 1 1 1 1 1	13	13	14	14	11	11	360	360	13	13	361	361	361	361	359	359	295	295	24	24	359	359	293	293	231	231	193	193	192	192	191	191	191	191	192	192	191	191	192	192	192	192	193	191	727
Starboard	RPM rpm		66	66	77	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	98	98	98	96	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	98	98	
Portside Pod	Angle		-	Ļ		1	1	1	01	0 -	01	0 -	-1	-1	-1	1-	0	0	-1	-1	L 1	-1-	н 1		69	69	149	149	185	182	186	186	182	185	186	186	186	186	185	185	185	185	186	186	186	186	101
Portside Pod	RPM RPM		97	16	1.7	1.6	67	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	96	96	96	97	97	67	67	16	16	26	97	67	97	97	97	97	97	97	97	97	97	97	97	- 20
Bow Bow		· + · 1 1 1 1 1	Stop	Stop	scop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	- 4010 -
Wind Direction	•	· + · 1 1 1 1 1 1	0	0 0	5 0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	- >
Wind	kts	+ -	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		- >
Heading	0	+	193	193	174 101	194	193	193	193	193	194	194	193	193	193	193	193	193	193	193	193	193	193	193	193 [193	194	194	194	194	135	195	196	196	198	198	200	200	202	202	206	206	208	208	211	211 215	1 173
~		+	12.5	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	14.0	14.0	13.5	13.5	11.5	11.5	0.11	11.0	10.5	10.5	9.5	9.5	8.5	8.5	8.0	8.0	6.5	6.5	6.0	6.0	5.0	3.51	12.2
TV	knots		-12.5	-12.5		0.1 1 / 1	-12.5	-12.5	-12.5	-12.5	-12.5	-12.5	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.5	-13.5	-13.0	-13.0	-13.5	-13.5	-13.0	-13.0	-11.0	-11.0	- TO - P	-10.5	-10.0	0.01-	-9.0	-9.0	-8.0	-8.0	-7.5	-7.5	-6.5	-6.5	-5.5	-5.5	-4.5	1.4.5	2.2
ΔŢ			-5.0	- - -	0. r	- 0.1	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	- 2.0	-5.0	-5.0	-5.0	-5.0	-5.0	-0.0	- 2. 0 - 1	0.0	0.4-	- 5.0	- 5.0	0.4-	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0-	>.>
T Time	Hhhmmsss	+ +	SU2MEOUT1	SIGMENULT	SZGIILGOTTTT	SSCIIIC DUTT	11109m54s	11h09m55s	11h09m56s	11h09m57s	11h09m58s	11h09m59s	11h10m00s	11h10m01s	11h10m02s	11h10m03s	11h10m04s	11h10m05s	11h10m06s	11h10m07s	11h10m08s	11h10m09s	11h10m10s	11h10m11s	11h10m12s	11h10m13s	11h10m14s	11h10m15s	11h10m16s	S/IMUIUII	SALMULTL	S6IMUIUII	SOZMOTUTI	STZWOTUTT	11110m22s	11h10m23s	11h10m24s	11h10m25s	11h10m26s	11h10m27s	11h10m28s	11h10m29s	11h10m30s	11h10m31s	11h10m32s	11h10m33s	

2.3.2 : Turning Circles : 1- No current Sequence Stop Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence Start : début crash stop 5 Stop Stop Notes: Notes: 14 noeuds 180 deg inboard full positive

Starboard Pod	ongre	361	361	360	360	361	361	361	361	359	359	361	361	359	50 0 0 0 0 0	0 0 0 0		300	360	7 4 7	747	212	215	192	192	193	193	193	143	7.77	192	ד עד ד י ד	121	TAT	191	76T	192	193	193	192	192	191	191	191	191	192
Starboard	rpm	66	66	66	66	66	66	66	66	66	66	66	69	69.0	- C C		5	0 0	- A	י ע	עס	69	66	66	66	66	66	ი ი ი	0 0 0	2 G	200	<u>ע</u>	ע ת	 ס ת	99	ר ת	66	66	66	66	66	66	66	66	66	66
Portside Pod	Angle	11	11	11	11			- -	-1	2	-	0	0		c '	- (~ 0			1 1 7	114	184	184	186	186	186	186	182	C 2 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 100 - 100 - 1	1 2 1	1.81	1 0	185 185	18P	186	186	186	187	187	185	185	186	186	185
Portside	rpm	97	97	61	6	6	67	26	97	97	67	26	1.6	1.6		10		5.0	20	201	1.6	1.6	67	1 26	67	16	97	97		7.7		0 10	97	- 10	7.7	1.6	57	97	97	97	67	97	97	97	97	97
Bow Thruster		Stop	stop 6400	aron	done	stop	stop	scop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	scop	scop	stop	scop	scop	arob 1	stop	dons	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop												
Wind Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0				5 0				50	0	0	0	0	0 0	0 0		5 0	0 0		 		5	0	0	0	0	0	0	0	0	0	0	0
Wind	kts	0	0	0	0	0	0	0	0	0	0	0	0	0 0	5 0			0 0	5 0	5 0	5 0	0 0	0	0	0	0	0 0	0 0	5 0		5 0	-	5 0	5 (0	э [,]	0	0	0	0	0	0	0	0	0	0
Heading	0	14	14	12	15	15	15	15	15	15	15	14	14	ດ ເ 1 ເ	0 U				C T .	14	14	14	14	15	15	14	14	14	++ (++ r	ν. γ. τ	τ Γ	N (N F F		1	1	11		11	11	11	12	12	13	13	14
>		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	14.0	14.0	C. 21	0.01	0.44	14.0	D . 41	14.0	14.0	14.0	13.0	13.0	11.5	11.5	11.0	11.0	10.5	C. 01	0.0	0.0	0.0	0.0	0.0	0.1	01	6.5	5.5	5.5	5.0	5.0	3.0	3.0	2.5	2.5	1.5
Ţ	knots	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.U	10.01		0 L	0.01	0.0T	0.0T	0.0T	C. 21	12.5	11.0	11.0	10.5	10.2	10.01	0.0T) , (⊃ ⊔ , c	0 0	0 L		0.1	0.0	0.9	5.0	5.0	4.5	4.5	3.0	3.0	2.0	2.0	1.5
Γ		5.0	5.0	5.0	2.0	5.0	5.0	5.0	5.0	5.0	5.0	0.5	۰. ۱	0.0 0.0	0 0 0 0		0 C	0.0	0 L	0 u 0 c	0 r	0 r	5.0 0	0.1 0.1	5.0	5.0	0.0 	0.0 0.0		ວ. ດ ເ	n 0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T Time	HHMMmSSs	11h05m50s	11h05m51s	11h05m52s	11h05m53s	11h05m54s	11h05m55s	11h05m56s	11h05m57s	11h05m58s	11h05m59s	11h06m00s	STOMODULT	SZUMOUTT	SCOMPORT I	65000001111	SCOMPORT L	SOUNDOLLT	S/ OMGOTITT	SSUMOUTT	SEQUEDOTTT	SOTUGOUTT	11h06mlls	11106m12s	11h06m13s	11h06m14s	11006m15s	S9TW90UTT	S/ THIGOITT	SSTUGOUTT	S6TU90UTT	SOZIIGOTTT	STZUGOUTT	SZZWONITT	SE2MOUTT	S#7W90UTT	11D06m25S	[11h06m26s]	11h06m27s	11h06m28s	11h06m29s	11h06m30s	11h06m31s	11h06m32s	11h06m33s	llh06m34s

ession: Name Path Instructor	: tra; : s: Jear	jecto j 1-Paul	JEANJEZ	i-10 crash s M, Jean-Mai	stops rie TROUS	Lake Current SELARD	оля - 	2.4.1 ming circl No current	ਬੰ		
equence: Tracks Start Students	: Norr : t15	nandie				Seguence Stop	: 201 : t16	0-05-03 -	10h25m29s		
transverse (vent AR a	e arrest Ices det	t vites s rafal	sse 14 r es à 40	loeuds noeuds)							
ш, Ш	VT.	1/11	Λ	Heading	Wind	Wind	Bow	Portside	Portside	Starboard	Starboard
		L UL	>	•	טריל מי לי מי לי מי		Tanantit	RPM	Angle	RPM	Angle
-++			- +		VCS	- + +	- +	+	- +	#du	
11h19m45s	-5.0	-13.0	13.5	194	0	0	Stop	96		98	359
11h19m47s	. 0. 0. 0.	- 10 - 1 - 13 - 15	14.0	194			Stop	97		55	16
11h19m48s	-5.0	-13.5	14.0	194	0	0	Stop	16	10	86	360
11h19m49s	-0.0	-13.5	14.0	194	0 0	0 0	Stop	97	0 0	98	360
SUCMETITI	0.0	0.0	0.0		0 0		Lettstro	о с	00	00	00
11h19m52s	-5.0	-13.5	14.0	193	0	0	Stop	96	, ,	66	359
11h19m53s	0.0 10	-13.5	14.0	193	0 0	0 0	Stop	96		66	359
11h19m55s	0.0 - 10-0	-13.5	14.0	193	00		Stop	1.6	44	თ. თ თ. თ	315
11h19m56s	-5.0	-13.0	13.5	194	0	0	Stop	67	75	00	278
11h19m57s	0.0 1.1 1.1	-13.0	13.5	194 195	00	00	Stop	1 20	75	66	278
11h19m59s	- 2.0	-11.5	12.0	195	00	00	Stop	16	200	5 D D	274
11h20m00s	-5.0	-11.0	11.5	195	0	0	Stop	97	87	66	277
11h20m02s	 	0.11-	11.5	195	0 0	00	Stop	1 26	87	99	275
11h20m03s	-5.0	-10.0	10.5	195	0	0	Stop	16	88	66	275
11h20m04s	-5.0	0.6-	5.0	194	0	0	Stop	97	87	66	275
11h20m06s	0.0-	- 8 - 0 - 8 - 5	5.0	194	0 0	00	Stop	97	24 24	66 6	275
11h20m07s	0.0-	-8.5	0.6	193	00	0	Stop	16	87	9 9	275
11h20m08s	0.0-	- 7.5 1	0.0	192	0 0	0 0	Stop	97	87	98	274
111h20m10s	0.0-	C. / -	0.8	190	0 0	00	Stop	100	287 287	86 8 0	274
11h20m11s	0.0-	-7.0	7.0	061	0	0	Stop	16	8	50	275
11h20m12s	0.0-	- 0 - 0	0.6	190	00	00	Stop	16	80 0	86	275
11h20m14s	0.01	ດ ເມີ ເມີ	6.0	187	00	00	Stop	16	00 00	85 86 86	276
11h20m15s	-0.0-	-5.5	6.0	187	0	0	Stop	97	88	66	276
11h20m16s	-0.0	ທີ່ ທີ່	0.0	186	0 0	0 0	Stop	97	88	66	274
11h20m18s	0.0-	- 0.0 - 0.0	5.0	185	00		stop	1.5		55 G	275
11h20m19s	-0.0	-5.0	5.0	185	0	0	Stop	97	88	86	275
11h20m20s	0.0-	-4.5	4.5	183	0	0	Stop	97	87	66	276
11h20m22s	0.0-	-4.5	4.5	183	0 0	00	Stop	1 20	87	6 0 6 0	276
11h20m23s	-0.0	-4.0	4.0	182	0	0	Stop	1 46	98	000	276
11h20m24s	-0.0	-4.0	4.0	181	0	0	Stop	97	87	66	275
11h20m25s	0.0	-4.0	4.0	181	00	00	Stop	16	6.8	66	275
11h20m27s	0.0-	0 L 0 M	0 U 0 M	181			Stop	10	20 00 20 00	- 0 0 0	276
11h20m28s	-0.0	-3.5	<u>.</u>	181	00	00	Stop	16	0 00	0.00	275

: 2010-05-03 - 10h25m29s : fin crash stop 7 2.4.2 : Furning Circles : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Normandie Tracks : Normandie Start : début crash stop 7 Students Notes: Notes: Transverse arrest (2.4.2) vitesse 13.5 noeuds crash stop transverse arrest (2.4.2) vitesse 13.5 noeuds

tarboard	Pod	o		77	22	0 0 0 0 0	360	360	359	359	359	359	317	317	359	359	360	360	19	19	27	27	14	14	359	359	356	356	266	266	273	273	276	276	275	275	274	274	274	274	275	275	275	275	275	275 275
starboard S	Pod	RPM	+	200	סע	0 00 0 0	66	66	66	66	66	66	66	66	66	99	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	98	98	99	66	66	66	66	99	66	66	66	66 66 68
Portside [Pod	Angle	+	 	1-1-	646		1	ŗ	- 1	0	0			2	5	0	0 -	0	0	0	0	0-	0-	0 -	0-	-2	121	6	6	84	84	88	88	88	88	06	06	88	88	89	89	68	89	68	68
Portside	Pod	RPM	+ -	16	41	169	16	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	96 97
Bow	Thruster		+	ana	STOP STOP	SFOD	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Wind	Direction	0	+				0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
puiM	Speed	kts	+-			o c	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
Heading		0	+	01	0 T F		14	14	14	14	15	15	14	14	14	14	14	14	14	14	15	15	15	15	14	14	14	14	14	14	14	14	13	13	13	13	14	14	13	13	13	13	12	12	10	10
_	^		+	0.01	10.01	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.5	13.5	13.0	13.0	13.5	13.5	13.5	13.5	13.5	13.5	13.0	13.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	12.0	12.0	11.0	11.0	10.5	10.5	9.0	0.6	8.5	8.5	8.0	8.0	1.0	6.5
	5	knots		12.01	12. J	12.5	12.5	12.5	12.5	12.5	13.0	13.0	13.0	13.0	12.5	12.5	13.0	13.0	13.0	13.0	13.0	13.0	12.5	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.5	11.5	10.5	10.5	10.0	10.0	8.5	8.5	8.0	8.0	7.5	7.5	6.5	6.5 6.0
	ΔL				0 U	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	ъ. о	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0
	T Time	HHhMMmSSs			T1h14m47c	11h14m43s	11h14m44s	11h14m45s	11h14m46s	11h14m47s	[11h14m48s]	[11h14m49s]	[11h14m50s]	11h14m51s	11h14m52s	11h14m53s	11h14m54s	11h14m55s	11h14m56s	11h14m57s	11h14m58s	11h14m59s	11h15m00s	11h15m01s	11h15m02s	11h15m03s	11h15m04s	11h15m05s	11h15m06s	11h15m07s	11h15m08s	11h15m09s	11h15m10s	11h15m11s	11h15m12s	11h15m13s	11h15m14s	11h15m15s	[11h15m16s]	[11h15m17s]	[11h15m18s]	11h15m19s	11h15m20s	11h15m21s	11h15m22s	[11h15m23s] [11h15m24s]

11h16m26s	0.0	0.0	1.0	335	0	0	Stop	97	68	66
11h16m27s	0.0	0.0	1.0	335	0	0	Stop	97	89	66
11h16m28s	0.0	0.0	0.5	334	0	0	Stop	77	89	75
11h16m29s	0.0	0.0	0.5	334	0	0	Stop	177	68	75

: 2010-05-03 - 08h21m11s : t12 2, 5. / : Turning Circles : 1- No current Start : 11 Stop : 11 Stop : 11 Note: Note: 2 hélices stoppées et les pods à 90° avec les hélices vers l'intérieur 3.5 noeuds à la machine à vague Sequence Stop Session: Name : trajecto j3p 3-05-10 Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence : Normandie : t11

starboard Pođ Angle	0 1	360	360	202	359	359	357	357	358	358	360	310	310	276	276	272	272	273	273	272	272	273	213	212	0	0	271	271	273	273	517	512 020	212	212	272	272	272	272	272	271	271
Starboard S Pod RPM	rpm	73	73	10	73	73	74	74	75	75	74	11	11	0	0	-0	ى ك	4	4	4	4	0	 > 0		00	0	0-	0-	0	0,					4 m	0	0	Ļ	н	0	0
Portside Pod Angle	0	0	0 -		4 0	0	1,	-1		4.	1 -	32	32	70	101	69	69	88	88	68	89	88	20 00	20 00 00	000	0	06	06	88	80 0	2 0	000	0 0	0 0	0 00	88	88	89	89	89	89
Portside Pod RPM	md1	72	72	1.5	72	72	72	72	72	12	12	6	6	9	6	6	9	10	10	<u>б</u>	<u>б</u>	0			00	0	0-	0-	01	0,0		2 5		+ C	0 0		- 1	0	0	0-	0-
Bow Thruster		Stop	Stop	stop stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	LeftStro	LeftStro	Stop	Stop	Stop	Stop	scop	dons	stop stop	SFOD SFOD	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Wind Direction	0	0	00		00	0	0	0	0	00		0	0	0	0	0	0	0	0	0	0	0 (00	0	0	0	0	0 0					0	0	0	0	0	0	0
Wind Speed 1	kts	0	00		00	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0 0	 > 0		00	0	0	0	0	0 0					0	0	0	0	0	0	0
Heading	0	17	17		17	17	16	16	15	S U F		15	15	14	14	14	14	14	14	12	12	12	71		10	0	8	8	80	 00 l		0 4	7	 ۲ (۲		0	0	360	360	358	358
Δ		9.5	0.0 0	n u n o	10.0	10.01	10.01	10.01	10.0	10.01	10.01	10.0	10.01	9.5	9.5	9.5	9.5	0.6	0.6	8.5	8.5	0.8	2.0	ο. α ο	0.0	0.0	7.5	7.5	1.0	0.1	0 4	0 u	, u		6.5	6.0	6.0	6.0	6.0	5.5	5.5
ΕΛ	knots	0.6	0.0		0.6	9.0	9.5	9.5	6 6	0 0 0 0	5.0	9.5	9.5	9.0	9.0	9.0	9.0	8.5	8.5 8	8.0	0.0	0.0	5 L	0. L	0.0	0.0	7.0	7.0	7.0) .	0 U	0 U			6.0	6.0	6.0	5.5	5.5	5.5	5.5
TIA		5.0	0.u	0 C	0.0 0	5.0	5.0	5.0	2.0	0 0 10 10	о. О	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time	HHMMmSSs	09h30m04s	09h30m05s	Sounderfed	09h30m08s	09h30m09s	09h30m10s	09h30mlls	09h30m12s	09h30m13s	09h30m15s	09h30m16s	09h30m17s	09h30m18s	09h30m19s	09h30m20s	09h30m21s	09h30m22s	09h30m23s	09h30m24s	09h30m25s	09h30m26s	212m0cH20	0913000295	09h30m30s	09h30m31s	09h30m32s	09h30m33s	09h30m34s	090500035S	20500000000000000000000000000000000000	Cillocheo	SPEMOEILO	09h30m40s	09h30m41s	09h30m42s	09h30m43s	09h30m44s	09h30m45s	09h30m46s	09h30m47s
<u>н</u>	-						_					_												_			-							-			_				

276	359	359	360	360	359	359	360	360	16	16	11	11	42
1	0	0	0	0	- -	H	15	15	25	25	25	25	28
90	0 1	0-	-1	-1-	0	0	- г	-	23	23	21	21	4
0 -	0 -	0-	0	0	e S	e	30	30	57	57	57	57	57
Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
325	324	324	324	324	323	323	323	323	323	323	322	322	321
3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5	2.5	3.0	3.0	3.0	3.0	3.0
2.5	2.5	2.5	2.0	2.0	2.5	2.5	2.0	2.0	2.5	2.5	2.5	2.5	2.5
-0.0-	-0.0-	-0.0	-0.0-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0-
9h31m49s	9h31m50s	09h31m51s	09h31m52s	09h31m53s	09h31m54s	09h31m55s	9h31m56s	9h31m57s	9h31m58s	9h31m59s	9h32m00s	9h32m01s	9h32m02s

え、ン、ス : Turning Circles : 1- No current Session: Name : trajecto j3p 3-05-10 Lake Path : Current Intructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence : Normandie : t13

: 2010-05-03 - 08h21m11s : t14 Sequence Stop

Start : t13 Stop Start : t13 : t14 Students Notes: 2.6 hélices stoppées et les pods à 90 avec les hélices vers l'exterieurs 2.5 noeuds à la machines à vague

	Starboard Pod	Angle	16	16	13	13	360	358	358	357	357	350	350	000	361	361	360	360	360	360	336	336	345	345	359	359	171	171	98	98	92	92	6	56	69	93	92	92	93	93	92	92	92	26
	Starboard S Pod	RPM rpm	73	73	73	131	51	73	73	73	73	73	- C - C	- 07	1 24	13	73	73	73	73	72	72	73	73	73	73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, ,	-
	Fortside Pod	Angle 。	+	-1-			 1 1	10	0 -	0-	0-	0 0	, c		+ C	0 0			0	0	-1 1	-1-					л	S	255	255	274	274	274	274	272	272	273	273	273	273	273	273	273	273
	Portside Pod	RPM rpm		73	73	13	73	73	73	73	73	73	5/	C/	73	73	73	73	73	73	73	73	73	73	73	73	0	0	-4	- 4	- 4	- 4	- 4	-4-	0,	0 -	0	0			1-1		0 4	- n -
	Thruster		stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	SFOD	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop															
	Wind Direction	•	0	0	0 0		00	0	0	0	0				00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	 		0	0	0	0	0	0	0	0	00	5
	Speed	kts	- 0	0	0 0		00	0	0	0	0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0		0	0	0	0	0	0	0	0	0 0	2
	Heading		13	13		101	12	11	11	11	11				101	10	10	10	6	6	6	6	6	6	8	8	6	6	6	 6 '		י ע	x				∞	8	6	6	9	9		U U
-	~~~~		9.5	9.5		ກັດ	9.5	9.5	9.5	9.5	6.0	م. م	0.0	0.01	9.5	9.5	10.0	10.01	10.0	10.01	10.01	10.01	10.0	10.0	10.0	10.0	9.5	6	9.0 1	9.5	0.0	0 1 0 1	200		0.0 1.0	а. С	8.0	0.8	7.5	7.5	7.5	7.5	0.1	10.1
	ΤV	knots	0.6	9.0	0.0	ກ ດ ວັບ	0.0 0.0	9.5	9.5	9.5	ທ ທີ່ ທີ່	ם ע חיט	о ц о ц	י ני היס		9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	6.5 5	9.9 9.9	0.0	ם ים ים	0 u	ο. Ο.	0.0	0.0	7.5	7.5	7.5	7.5	7.5	7.5	0.0	1.0
	٨٢		5.0	0.0 1	0 c	0 c	0.0 0	5.0	5.0	5.0	0.0 	0 u	о с п и	0 C	2.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Time	HHMMmSSs	09h37m36s	09h37m37s	S85m/5U20	09h37m40s	09h37m41s	09h37m42s	09h37m43s	09h37m44s	09h37m45s	09/13/m465	S Tm/ CTICO	09h37m49s	09h37m50s	09h37m51s	09h37m52s	09h37m53s	09h37m54s	09h37m55s	09h37m56s	09h37m57s	09h37m58s	09h37m59s	09h38m00s	09h38m01s	09h38m02s	09h38m03s	09h38m04s	09h38m05S	090438#068	0.0138m0/S	0.0400000	SEUMBERTED	SULMSCHED	STTWSEUAD	09h38m12s	09h38m13s	09h38m14s	09h38m15s	09h38m16s	09h38m17s	09h38m18s	SCTINSCITCO
	Ð		1																																									

c		2	0	0	C	c	5 0	0	0	0	Ч	1 I		0	0	Г	-	4 0	0	0	0		o 0	с [,]	0	0	0	c	o (2		Ч	C	c		0	0	0	C				0	0	0	C			5 0	⊃ ·	0	0	0	0	0	0 -	1			-	- -	Ч	0	0	c		0 0	0	0	0	0
1 646	010	717	272	272	272	010	1 1	717	274	274	273	273		017	273	273	572		717	272	273	572		717	272	273	273	1 646		717	212	272	272	040	1 1	1/2	271	273	273	040	010	7 1 7	513	273	273	273	272	0.00	014	717	717	273	273	272	272	273	573	0-1	7/4	274	273	273	272	272	272	100	717	13	73	0	0
		 	0-	0-	- 0 -	5			0-	0-	0-	0-			0	0-	C I			0-	0-				- -	0	0	C I			0	0	-01	- C		 	0	0-	0-					0	0-	0-					0	0	0	0-	0-	-1	5	 - C		0	0 -	0-	E.	- -	C	> c			0	 	-1-
0+00	arob	scop	Stop	Stop	Stop	0100	acop at at	Stop	Stop	Stop	Stop	Stop	4040	done	Stop	Stop	0+010	4010	scop	Stop	Stop	aron	4 1	acob	Stop	Stop	Stop	Ston		acop	Stop	Stop	Stop	CLON	4000	stop	Stop	Stop	Stop	010	C + OP	arob	scop	Stop	Stop	Stop	STOP 1	Stor -	aroh	scop	stop	Stop	Stop	Stop	Stop	Stop	8+01	102	acob	Stop	Stop	Stop	Stop	Stop	Stop	4000	arop Gran	Scop	Stop	Stop	Stop
-		0	0	0	0	c			0	0	0	0			0	0	c			0	0	- c			0	0	0	c			0	0	C	C		0	0	0	0				0	0	0	C				0	0	0	0	0	0	0				0	0	0	0	0	C			0	0	0	0
- -		; D	0	0	C	c			0	0	0	0			0	0	- C		>	0	0	C	- c		0	0	0	C		 > :	2	0	C	C			0	0	C				>	0	0	C					0	0	0	0	0	0				0	0	0	0	0	0		0 0	5	0	0	0
1 100	170	324	324	323	323	320 1		340	319	319	318	318	215	010	316	315	215		CT C	315	314	214		010	313	313	313	312		215	275	312	311	211	1 1 1	310	310	310	310	200	000		303	309	308	308	202			307	1.05	306	306	305	305	305	205		204	304	304	304	303	303	303	202		302	302	301	301
1 0	N (0.7	2.5	2.5	2.5	2 5		0.1	2.5	2.5	2.5	2.5		1 1	2.2	2.5	о Г	1 0	0.1	2.5	2.0	0		0.2	2.0	2.0	2.0	0.0		2.0	0.2	2.0	2.0	0 0		0.1	2.0	2.0	2.0	0 0			0.2	2.0	2.0	2.0	0		1 0	0.2	10.2	1.5	1.5	1.5	1.5	2.0	0	10	0.2	0.2	1.5	1.5	1.5	1.5	1.5		<u>, n</u>		L.5	1.5	1.5
u c	0 L	0.7	2.5	2.5	2.5	с С		0.1	2.0	2.0	2.0	2.0	0		2.0	2.0	0		2.0	2.0	2.0	0 0		0.1	2.0	1.5	1.5	ר ני		n .	0.2	2.0	1.5	ч Ч) L	ר. היי	1.5	1.5	1.5	и Г	1 U) L 	I	1.5	1.5	1.5	ית ה) U) L - -	0.1 1	L.D	1.0	1.0	1.5	1.5	1.5	ע ר	ם ו י י	0 I	۲.5	1.0	1.0	1.0	1.0	1.5			л	1.0	1.0	1.0
0		-0.0	-0.0	-0.0	-0.0	0			0.0-	-0.0	-0.0-	-0.0-			-0.0	-0.0-	0 0 -		0.0-	-0.0	-0.0	0 0-		0.0-	-0.0	-0.0	-0.0	-0.0		0.0	-0.0	-0.0-	-0.0	0 0-		0.0-	-0.0	-0.0	-0.0	0			-0.0	-0.0	-0.0	-0.0	0.0-			0.0-	0.0-	0.0-	-0.0	-0.0-	-0.0	-0.0	0 0-	0.0	0.0-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0			0.0-	-0.0-	0.0-	-0.0
0 0 h 2 0 m 2 1 c	STZIIIC CIICO	0 3115 3mz 2S	09h39m23s	09h39m24s	09h39m25s	09h39m26s		S/7067160	09n39m28s	09h39m29s	09h39m30s	09h39m31s	- ccmo c 400	8701160TE0	09h39m33s	09h39m34s	09h39m35c	and	SOCIIICCTICO	09h39m37s	09h39m38s	091392395	o o mo c quo	091139111405	09n39m41s	09h39m42s	09h39m43s	09h39m44s	- J Mocdoo	SC#IIICCIICO	0203304465	09h39m47s	09h39m48s	09h39m49c		SUCMEENED SUCCESSION	09h39m51s	09h39m52s	09h39m53s	09h39m54e	0 ah 3 amere	a character	SACMESTED	09h39m57s	09h39m58s	09h39m59s	09h40m00s	200000000000		870III078	02D40m03S	09h40m04s	09h40m05s	09h40m06s	09h40m07s	09h40m08s	09/140/09/2	201m01400	SOTIOFICO	STTW054460	09h40m12s	09h40m13s	09h40m14s	09h40m15s	09h40m16s	09h40m17c	5/ TINO FIICO	S8TUN400	09h40m19s	09h40m20s	09h40m2ls

		Jalive																																					
		U ve	tarboard Pod	Angle	21	360	358	358	17	361	361	25	29	29	37	37	240	32	32	44	44	48	49	ת 14 ער	51	0 0 0 0 0 0	0 1 0	57	58	ກ ກີ	0 0 0	57	57	00 00 00 00	200	51	21	21	361 361
		de l	tarboard S Pod	rpm	66	66	66	66	98 86	66	66	66	6 6 6	66	66	99 9	n 0 n 0	66	66	ດ ເ ເ	1200	-23	- 28 20 1	1 7 3	-73	- 74	- 77 -	-77	-79	- 19		-84	-84	- 86	0 00 0 00 1 1	000	- 92	- 92	- 94
S	0h25m29s	board	Portside S Pod	Angle °	-1	0 0		-1			- 1		00	0	0	0 -		1	H I	1.55	336	336	330	305	308	309	308	308	308	308	308	310	310	309	309	309	335	335	D 0 1 1
, (,) ning Circle No current	0-05-03 - 1	0° au	Portside Pod	rpm	97	97	16	97	97	97	16	1 1 2 0	1 26	97	97	1.6	1 2 6	52	97	54 7 7	-22	-22	1 58	- 20	- 72	47-	- 76	- 76	- 78	- 18	- 82	-84	- 84	- 86 -	0001	0 00 1	-91	- 91	- 93 -
ा मा भ	: 201 : t20	ordes 6	Bow Thruster		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	srop srop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	STOP	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop							
Lake Current ELARD	Sequence Stop	add p	Wind Direction	0	0	00	00	0	00	0	0		00	0	00		00	0	0 0		00	0	00		0	00	00	0	0 0		0	0	0 0	 > c	00	0	0	0 0	00
stops rie TROUSS		turn	Wind Speed	kts	0	00	00	0 0	00	0	0		0	0	00		00	0	00		00	0	00		0	00	00	0	00		0	0	00		00	0	0	00	0 0
-10 crash N, Jean-Ma		18	Heading	0	195	195	195	195	195	195	195	195 195	195	195	195	1 2 2 1 1 2 2 1	195	195	195		193	193	193	194	194	194	195	195	196	1991	199	200	200	202	204	204	210	210	213
3P 3-05 JEANJEA		.6.1	>	4	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.51	13.5	13.5	13.5	13.5	13.5	13.5	13.5	14.0	13.5	13.5	13.0	11.5	11.5	10.5	10.0	10.0	0.0 0.0	0.00		8.0	0.U	- r . r	0.4	7.0	5.5		5.5 2.5
ecto ja 1-Paul d	landie	lds 2	TV	knots	-12.5	-12.5	-12.5	-12.5	-12.5	-12.5	-12.5	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-12.5	-12.5	-12.5	-11.0	-11.0	-10.5	-10.0	-10.0	ດ. ເ	0.0	-8.0	-7.5	1. U	0.7-	-6.5	-6.5	- 5. J	5. 1 1	-5.0
: traj : rrs: Jean	: Norn : t19	3.8 noeu	ΔT		-5.0	-5.0	-5.0	-5.0	0.0-	-5.0	-5.0	- 2.0	-9.0	-5.0	- 2.0	-5.0	-5.0	-5.0	- 0. u		-5.0	-5.0	-5.0	-5.0	-5.0	0.0 1	-5.0	-5.0	- 5.0	0.0-	-0.0	-0.0	0.0) O.O.	-0.0	-0.0	-0.0	0.0	0.0
Session: Name Path Instructo	Jequence: Tracks Start Students	Notes: Vitesse 1	T	Hhhmmsss	11h29m33s	11h29m34s	11h29m36s	11h29m37s	11h29m39s	11h29m40s	11h29m41s	11h29m43s	11h29m44s	11h29m45s	11h29m46s	11h29m48s	11h29m49s	11h29m50s	11h29m51s	11h29m53s	11h29m54s	11h29m55s	11h29m56s	11h29m58s	11h29m59s	11h30m01s	11h30m02s	11h30m03s	11h30m04s	11h30m06s	11h30m07s	11h30m08s	11h30m09s	11h30ml1s	11h30m12s	11h30m13s	11h30m14s	11h20m165	11h30m17s

mds

		mdi																																		
	-	Necjative	Starboard Pod	° at buy	12 359	359 17	17	180	13	13	17	359	202 R L	15	73	50	50	52	52	52	00 0 01 0	57	57	57	58	2 4	56	56	56 28	00 00	359	359	360	360	360	359 359
	00	fred	Starboard Pod	mqr mgr	66 66	66	66	86 8 6	600	66	n 0 n 0	66	ה פ ה פ	66	880	40	40	- 60	- 69	-69	- 72	-76	-76	-79	- 80	180	- 84	-86	0.00	000	- 92	- 92	- 94	- 95	- 95	- 198 - 198
es	10h25m29s	product	Portside Pod		11	- <u>,</u> -	н г		10	0 (N 02	r-1 7		0 0	308	310	310	310	310	310	309	309	905 905	309	309	808	309	308	308	310	0	00	0	-1	L 1	00
, 6, 2 ning circt No current	0-05-03 -	o auli	Portside Pod	mqr mdr	97	97	64	96	56	97	16	97	10	16	86	38	38	1 60	- 69	-69	- 72	- 76	- 77	- 77	0.00	- 84	- 84	5 I 1	- 85	- 87	- 91	- 61		- 95	- 95	161 161
	: 201 : t18	rach be	Bow Thruster	+	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Lake Current ELARD	Sequence Stop	ball f	Wind Direction	• • • • • • • • • • • • • • • • • • •	00	00	0	00	00	00	00	00		0	00	00	0 0	00	00	00	00	0	0 0	0	0 0	00	0	0 0		0	0	00	00	0	0	0 0
stops rie TROUSS		turn	Wind Speed	kts	00	00	0	0 0	0	00	00	00		0	00	00	00	ə c	00	00	00	0	0 0	0	0 0	00	0	0 0		00	0	00	00	0	0	00
-10 crash N, Jean-Ma		A. an	Heading	• •	12	13	14	14	14	14	1 1	14	1 F	15	15	0 1 H	15	1 L	15	12	13	12		12	11	10	10	თი	ס ת	ה ה	2		2	ъ	ம ப	<u>س</u> م س
3p 3-05 JEANJEA		.6.	>	+	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.5	13.5	13.5	13.5	13.0	13.0	10.21	11.5	11.5	10.5	9.5	0.0	0.6	0.0	7.5	7.5	0.1	9.01	6.0	5.5	ی. م	4.5	4.0	4.0	3.0
ujecto j m-Paul	mandie	spue	TV	knots	12.5	12.5	12.5	12.5	13.0	13.0	12.5	12.5	13.0	13.0	13.0	12.5	12.5	11.5 11.5	11.0	11.0	10.01	9.0 0.1	ນ ແ ບັນ	8.5	000	7.5	7.5	ທີ່ ທີ່	0 C	6.0	5.0	0. r	4. 1. 13	4.0	4.0	о.
: tra :)rs: Jea	: Nor : t17	13.5 noe	٨٢	1	5.0	5.0	5.0	0.0	5.0	0 C 10 U	5.0	0.0 0	0.0	5.0	0.0 v	2.0	0.0 0.0	0.0 0.0	5.0	0.0 0.0	2.0	0.0 .0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Session: Name Path Instructo	Sequence: Tracks Start	Notes: vitesse 1	TTime	HHMMmSSs	11h25m49s	11h25m52s	11h25m53s	11h25m54s	11h25m56s	11h25m57s	11h25m59s	11h26m00s	11h26m02s	11h26m03s	11h26m04s	11h26m06s	11h26m07s	11h26m09s	11h26m10s]11h26m11s	11h26m13s	11h26m14s	11h26m16s	11h26m17s	11h26m18s	11h26m20s	11h26m21s	11h26m22s	11h26m24s	11h26m25s	11h26m26s	11h26m27s	11h26m29s	11h26m30s	11h26m31s	11h26m33s

Sequence Stop Name : trajecto j3p 3-05-10 crash stops Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Normandie t23 Tracks Sequence: Session: Start

2010-05-03 - 10h25m29s t24

2.7,/ Turning Circles 1- No current

.. ..

Students

Portside Starboard Starboard Pod Pod Pod Pod Angle RPM Angle o Pod RPM rpm Portside Pod RPM rpm Bow Thruster Wind wind Speed Direction kts noeuds 2,7.1. & Heading | 0 5 deceleration vitesse 13.5 knots 5 5 111h38m05s 111h38m05s 111h38m05s 111h38m05s 111h38m05s 111h38m10s 111h38m10s 111h38m12s 111h38m12s 111h38m12s 111h38m12s 111h38m12s 111h38m12s 111h38m12s 111h38m205 HHhMMmSSs Time Notes: F

							-	く		19
						•	CPI.	will.		
							4 2 6	Arthoda d		
2, 7. 2	: Turning Circles	: 1- No current			: 2010-05-03 - 10h25m29s	: t22	· · ·	LAV and and	and here is	
	Lake	Current	SELARD		Sequence	Stop		T The	win b	
	crash stops		Jean-Marie TROUS					C	Z . T . Y .	
	crajecto j3p 3-05-10		Jean-Paul JEANJEAN,		Normandie	t21			vitesse 13.5 noeuds	
Session:	Name : 1	Path :	Instructors: ,	Sequence:	Tracks : 1	Start : !	Students	Notes:	deceleration .	

-						4			-			
Ē	Time	ΔL	ΤΛ	^	Heading	Speed	Direction	Thruster	Portside	Portside S Pod	tarboard 5 Pod	itarboard Pod
_						4			RPM	Angle	RPM	Angle
<u></u> .	Hhhmmsss		knots	_	0	kts	0		rpm	0	rpm	0
	11h34m20s	5.0	12.5	13.5	15	0	0	Stop	16	0	66	358
	l1h34m21s	5.0	12.5	13.5	15	0	0	Stop	97	0	66	358
	l1h34m22s	2.0	13.0	13.5	14	0	0	Stop	97	42	66	358
	11h34m23s	0.0	13.0	13.5	14	0	0 0	Stop	97	42	66	358
	11134m24s	0.0	13.0	13.5	14	0 0	00	Stop	1.6	 	 თი თი	5) C 1) C 1) C
	SC2M4CAL	0.u	13.0	12.21	141			stop	10			ς υ η τ
		о с о ц	0.01	0. c	1 7 L			acop 6400	0		- 0 N 0	ν α υ α υ
1 5	21124m28c	0 C	13.0	0.01	141			SFOD	- co	328	r c 0	ν υ υ
	1h34m29s	5.0	13.0	13.5	14			Stop	6.6	328	26	1 m
	11h34m30s	5.0	12.5	13.0	13	00	0	Stop	64	328	- L L	35
-	11h34m31s	5.0	12.5	13.0	13	0	0	Stop	79	328	77	35
-	l1h34m32s	5.0	12.5	13.0	14	0	0	Stop	65	328	67	35
-	L1h34m33s	5.0	12.5	13.0	14	0	0	Stop	65	328	67	35
-	L1h34m34s	5.0	12.0	12.5	14	0	0	Stop	60	328	54	35
_	l1h34m35s	5.0	12.0	12.5	14	0	0	Stop	60	328	54	35
_	l1h34m36s	5.0	11.5	12.0	14	0	0	Stop	43	327	37	35
-	l1h34m37s	5.0	11.5	12.0	14	0	0	Stop	43	327	37	35
_	l1h34m38s	5.0	11.5	11.5	14	0	0	Stop	42	329	35	36
	L1h34m39s	5.0	11.5	11.5	14	0	0	Stop	42	329	35	36
_	l1h34m40s	5.0	10.5	11.0	14	0	0	Stop	41	329	28	35
	l1h34m41s	5.0	10.5	11.0	14	0	0	Stop	41	329	28	35
	11h34m42s	5.0	10.0	10.5	13	0	0	Stop	31	328	27	36
	l1h34m43s	ъ.0	10.0	10.5	13	0	0	Stop	31	328	27	36
	11h34m44s	5.0	10.0	10.5	13	0	0	Stop	30	328	21	34
	11h34m45s	2.0	10.0	10.5	13	0	0	Stop	30	328	21	34
	11h34m46s	0.0	و. م	10.0	12	0	0	Stop	9	328	21	3 C
	llh34m47s	2.0	6.0	10.0	12	0	0	Stop	9	328	21	35
	11h34m48s	2.0	9.9	6.5	12	0	0	Stop	19	330		34
	L1D34m49S	9.0 0	۲.5 د د	9.0 7.0	7 7	0 0	0 0	Stop	9 H G	330		34
<u> </u>			0 0 0 0	0 0	7 C	5 0		stop	2 1	525	77	n u ŋ r
	STCHECTT1			0.0	4 C			atop a	N -	0000	77	
	11h34m53s		000	0.0				Stop Top	15	906	4	
	11h34m54s	0.0	о С. С.	0.6	5 0	0		Stop	+ C	329		34
	11h34m55s	0.0	8.5	9.0	6	0	0	Stop	0-	329	0	34
1-1	11h34m56s	0.0	8.5	8.5	80	0	0	Stop	42	329	35	35
	11h34m57s	0.0	8.5	8.5	8	0	0	Stop	42	329	35	35
<u> </u>	11h34m58s	0.0	8.0	8.0	9	0	0	Stop	42	328	62	34
	l1h34m59s	0.0	8.0	8.0	9	0	0	Stop	42	328	62	34
	11h35m00s	0.0	7.5	8.0	<u>س</u>	0	0	Stop	43	329	62	33
	11h35m01s	0.0	7.5	8.0	ۍ س	0	0	Stop	43	329	62	33
	11h35m02s	0.0	7.5	8.0	4	0	0	Stop	42	329	61	34
	11h35m03s	0.0	7.5 2.1	0.1	4.	5 0	5 0	Stop		329	61	34
-	L1n35m04s	0.0	c./	C. 1	0	D	2	stop	3.1	239	9.7	134

? reduced spin while speed is reduced to 8 kn Hen is reduced to 8 kn Hen both pods to 180° with increased spin -

Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence

: 2010-05-03 - 10h25m29s : t26

Sequence Stop

: Normandie : t25

3. *S. I* **:** Turning Circles **:** 1- No current

Signation Memory Memory (1) Table (1) Table (1) Table (turn 180° outboard, then	112 150	wide cc / war		X En / 30 00m																																			
Statut Statut<		, then	rboard Pod	Angle	0	360	16	16	349	359 259	359	360	12	12	360	360	555	359	359	92	314	314	196	196	197	196	196	197	195	195	195	195	191	193	193	191	191	191	192	192	192 192
Statt Statt <th< td=""><td></td><td>so rpin</td><td>arboard Sta</td><td>RPM</td><td>mgr</td><td>66</td><td>66</td><td>66</td><td>50</td><td>5 D</td><td>66</td><td>66</td><td>- 6 6</td><td>66</td><td>97</td><td>97</td><td>62</td><td>77</td><td>- 22</td><td>74</td><td>75</td><td>75</td><td>74</td><td>74</td><td>U L L</td><td>75</td><td>75</td><td>74</td><td>36</td><td>36</td><td>36</td><td>36</td><td>0 00 0 00</td><td>26</td><td>26</td><td>26</td><td>26</td><td>26</td><td>26</td><td>26</td><td>25</td></th<>		so rpin	arboard Sta	RPM	mgr	66	66	66	50	5 D	66	66	- 6 6	66	97	97	62	77	- 22	74	75	75	74	74	U L L	75	75	74	36	36	36	36	0 00 0 00	26	26	26	26	26	26	26	25
Statute <	86711107110	e to	Portside St Pod	Angle	0	160	342	342	358	357	357	167	358	358	323	323	26	362	362	241	27	27	142	142	184	183	183	183	184	184	184	184	184	183	183	183	184	184	183	183	183 183
Statt Statt Statt Statt Statt Relations Callents Callents Statter Statter Statter Astronom Labor VL VL VL VL Model Statter Astronom Labor VL VL VL VL VL Model Statter Statter <t< td=""><td></td><td>Reduc</td><td>Portside </td><td>RPM</td><td>rpm</td><td>97 </td><td>97</td><td>16</td><td>1.6</td><td>16</td><td>97</td><td>16</td><td>16</td><td>97</td><td>94 </td><td>94</td><td>111</td><td>71</td><td>71</td><td>66</td><td>99</td><td>66</td><td>65</td><td>65</td><td>11</td><td>72</td><td>72</td><td>72</td><td>45</td><td>45</td><td>46</td><td>46</td><td>40</td><td>39</td><td>39</td><td>27</td><td>17</td><td>26</td><td>27</td><td>27</td><td>26</td></t<>		Reduc	Portside	RPM	rpm	97	97	16	1.6	16	97	16	16	97	94	94	111	71	71	66	99	66	65	65	11	72	72	72	45	45	46	46	40	39	39	27	17	26	27	27	26
Start Start Stop Start : LS Stop Stop Start : LS Stop Stop Time VL VT V Hundle Time VL VT V Hundle Mundle Tilldamd7S 5:0 13.0 13.5 144 0 0 111443m55 5:0 13.0 13.5 144 0 0 0 111444m55 5:0 13.0 13.5 144 0 0 0 111444m054 5:0 13.0 13.5 144 0 0 0 0 111444m054 5:0 13.0 13.5 144 0	: t26	flottante	Bow			Stop	Stop	Stop	STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	stop	Stop	Stop	Stop	Stop
Start Start Time VL VT V Time VL VT V Time VL VT V HHHMMMSSs VL VT V HHHMMMSss VL VT V HHHMMMSss VL VT V HHHMMMSss S.0 13.0 13.5 14 HHHMMMSss S.0 13.0 13.5 14 HHHMMMSss S.0 13.0 13.5 14 HHHMMSss S.0 13.0 13.5 14 HHMMMSs S.0 13.0 13.5 14 HHMMMSs S.0	Stop	car ligne	Wind Direction		0	0	0	0	50	00	0	00	0	0	0	0 0	0	0	0	00	00	0	0	0 0		0	0	00	00	0	0 0	 - c		0	0	0 0		0 0	0	0	00
Start : L25 Students : L25 Students : L25 Students (obligé des (2.8) vitesse 13.5 noeuds (obligé des (2.8) vitesse 13.5 noeuds (obligé des (2.8) vitesse 13.5 noeuds (obligé des (11h43m62s) knots 11h43m62s 5.0 13.0 11h43m62s 5.0 13.0 13.5 11h43m65s 5.0 13.0 13.5 11h44m01s 5.0 13.0 <td></td> <td>s'arreter</td> <td>Wind</td> <td>)))</td> <td>kts</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>00</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>00</td> <td>00</td> <td>0</td> <td>0 0</td> <td>00</td> <td>00</td> <td>0</td> <td>0</td> <td>00</td> <td></td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>5 0</td> <td>00</td> <td>0</td> <td>0</td> <td>0 0</td> <td></td> <td>00</td> <td>0</td> <td>0</td> <td>00</td>		s'arreter	Wind)))	kts	0	0	0		00	0	0 0	0	0	0	00	00	0	0 0	00	00	0	0	00		0	0	0 0	0	0	0 0	5 0	00	0	0	0 0		00	0	0	00
Start : 25 Students : 25 Students : 28 Notes: VL VT V T T VL VT V HHhMMSSs VL VT V V IIIH43m45s 5:0 13.0 13.5 IIIH43m45s 5:0 13.0 13.5 IIIH43m55s 5:0 13.0 13.5 IIIH44m05s 5:0 13.0		oligé des	Heading		0	14	14	14	141	14	14	14	14	14	14	144 144	15	16	10	191 1	17	17	17	17	1 61	19	19	20	23	23	24		26	27	27	6 00	212	31	32	32	35 35
Start : 125 Start : 255 Students UL T Time T Vitesse 13.5 HHhMmSSs Vitesse 13.5 Illh43m47s 50 Illh43m49s 50 Illh43m51s 50 Illh44m01s 50 Illh44m1ss 50 Illh44m1ss 50 Illh44m1ss 50 Ill		ls (ol	>			13.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.0	12.0	12.0	11.5	11.5	10.5	10.01	10.0	0.0 0.0	8.5	8.5	0.0	0.4	2.2	7.0	1.0	0.1	2.0	6.5	6.5	9.9	6.0
Start : 25 Start : 2.8) vitesse 13 (2.8) vitesse 13 UL T Time VL HHhMMSSs VL T Time VL HHhMMSs VL T Time VL HHhMMSs VL T VL HHhMMSs VL T VL T VL HHMMSs VL VILL VL T VL HHMMSs VL T VL HHMMSs VL T T T VL	OTDIN	.5 noeuc	TV		knots	12.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.5	11.5	11.5	11.0	11.0	10.01	9.5	9.5	0.0 6 0	8.0	8.0	2 · L	. r	0.7	6.5	6.5	0.0	ວ ທ ວ ທ	о 	5.5	ດ. ເມີ	0.0 0.0
Start Start Start Start T	: t25	esse 13.	ΠΛ		1	5.0	5.0	5.0	n r	0.0	5.0	0.0 0.0	5.0	5.0	5.0	0 C	5.0	5.0	0.0 0	0.0 0.0	5.0	5.0	5.0	0.u	5.0	5.0	5.0	0 C	5.0	5.0	0.u	0 C	5.0	5.0	5.0	0. r	0.0	5.0	5.0	0.0 0.0	5.0
	Start	Students Notes: (2.8) vite	[T Time		[HHhMMmSSs]	[11h43m47s]	11h43m48s	11h43m49s	11h43m51s1	11h43m52s	11h43m53s	11h43m54s	11h43m56s	11h43m57s	11h43m58s	11h44m00s	11h44m01s	11h44m02s	11h44m03s	11h44m05s	11h44m06s	11h44m07s	11h44m08s	11h44m09s	11h44m11s	11h44m12s	11h44m13s	11h44m14s	11h44m16s	11h44m17s	11h44m18s	11bAAm20c	11h44m21s	11h44m22s	11h44m23s	11544m245	11h44m26s	11h44m27s	11h44m28s	11h44m29s	111h44m31s

2,9,1 : Turning-Circles : 1- No current Sequence Stop Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence Start : t29 Students Notes: essai 25 (2.9.4) vitesse 13.5 test pas significatifs (1a decélération n'est pas à l'echelle du Normandie)

: 2010-05-03 - 10h25m29s : t30

Time	M.			Heading	DTTT M						545024502
		ΓΛ	>		Speed	Direction	Thruster	Pod RPM	Angle	Pod RPM	Pod Angle
MMmSSs		knots	·	0	kts	0		ndı	0	ngn	1
153m40s	5.0	13.0	13.5	13	0	0	Stop	97	360	66	360
53m41s	5.0	13.0	13.5	13	0	0	Stop	97	360	66	360
53m42s	5.0	13.0	13.5	14	0	0	Stop	97	360	66	20
153m43s	5.0	13.0	13.5	14	0	0	Stop	97	360	66	20
153m44s	5.0	13.0	13.5	14	0	0	Stop	96	360	66	260
53m45s	5.0	13.0	13.5	14	0	0	Stop	96	360	99	260
153m46s	5.0	13.0	13.5	14	0	0	Stop	97	360	66	360
53m47s	5.0	13.0	13.5	14	0	0	Stop	97	360	66	360
153m48s	5.0	13.0	13.5	14	0	0	Stop	97	360	66	360
153m49s	0.0 10	13.0	13.5	14	0	0	Stop	97	360	66	360
53m50s	2°0	13.0	13.5	14	0	0	Stop	16	360	66	359
STCTC2	0.0	13.0	13.5	14	0 0	0	Stop	16	360	66	359
SZGM5CI	0.1 0.0	13.0	13.5	14	0	0	Stop	97	360	66	217
SECTER	0. 0.	13.0	13.5	14	0	0	Stop	97	360	66	217
S4CH2C	0. u	13.0	14.5	15	0	0	Stop	63	360	96	361
SCCM5C	0 1 0 0	13.0	1 u	15	0	0	Stop	93	360	96	361
SOUDOS SOUTOS	0 1 0 1	17. P	1 · · ·	ר ו ר	0 0	0	Stop	6	360	91	361
S/ GIISC	0.0 0.0	12.5	0.01 0.0	ມ t 	0 0	0 0	Stop	6	360	16	361
200000		10.01	10.0 10.0	- C 		50	Stop	59	695	16	360
54m00s	o c n ư	12.0	10.01	- r 			scop of the stop		200	4 4	360
54m01s	5.0	13.0	20.00	61			STOD) a	096	2 C 0	000
54m02s	5.0	13.0	13.5	19	0	0	Stop	1 62	900	30	360
54m03s	5.0	13.0	13.5	19 I	0	0	Stop	79	359	79	360
54m04s	5.0	12.5	13.0	20	0	0	Stop	79	360	79	359
54m05s	5.0	12.5	13.0	20	0	0	Stop	164	360	79	359
54m06s	2.0	12.0	13.0	21	0	0	Stop	75	360	78	359
54m075	0.0	12.0	13.0	21	0	0	Stop	75	360	78	359
54m08S	0.0	11.5	12.5	24	0 0	0 0	Stop	75	360	78	361
24m0 45	0.0	11.5	9.2T	24	0	0	Stop	75	360	78	361
	0.0		0.1 1	97	5 0		Stop	15	359	78	359
0TTIII#0	5 C	0.11	0.21			> 0	stop	21	252	81	359
57TIIFC	0 U		0.7T	17	0 0		stop	35	360	61	359
CTIME C	о с • и	0.44	0.21				stop	0 L	202	51.	5 5 5 5 5 5
54m15s	0 C		0.01	10			Stop	0, 1	195	9/	000
54m16s	5.0	10.5	12.0	3.4	0 0		Stop -	- ur	1020	10/	0000
54m17s	5.0	10.5	12.0	33	0	0	Stop	75	360	73	0 0 0 0 0 0 0
54m18s	5.0	10.0	12.0	35	0	0	Stop	75	359	73	359
54m19s	5.0	10.0	12.0	35	0	0	Stop	75	359	73	359
54m20s	5.0	9.5	11.5	39	0	0	Stop	75	359	73	359
54m21s	5.0	9°2	11.5	39	0	0	Stop	75	359	73	359
54m22s	2.0	0.6	11.5	41	0	0	Stop	75	361	72	359
154m23s	ъ.0	9.0	11.5	41	0	0	Stop	75	361	72	359

46	46	42	42	42	42	45	45	51	51	51	51	51	101	52	22	2 1	N 1	1 1	51		11	1.5	1 1	1 1	1 1	1 1	4.9		0 t 4	11	H UC	1 10	η σ 1	ັ ຫ	-29	-29	44	44	71	71	73	73	75	75	51	61	1 2 0		200	50 0	200	000	η σ ο α	55	16	02	70	۲. ۲
360	360	359	359	900	359	360	360	360	360	358	358	360	360	360	360	002	200	000	360	50 C	202	000	000	260	000	200	360	000	000	6 5 5 7 7	096	360	359	359	30	30	167	167	181	181	183	183	182	182	183	183	787		787	187 787	100	100	182	183	183	182	182	183
57	57	57	57	46	46	46	46	47	47	46	46	47	47	4.1	1.4	44	44	4 1	41	2 0	אמ	אינ	- C C	א גע ע גע	0 0	000	000	000	000		10	000	C I	0-	0	0	55	55	71	11	72	72	75	75	20 1	18	1 0		τ 2 C C	ς Σ	000	000	0 0	00	06		81	55
Stop	Stop	stop	stop	scop	stop	scop	Stop	scop	s cop	scop	arop arop	scop	arop 8ron	STOP	STOP -	STOP C	Stop	SLOD	Stop	Stop	SLOD	Stop	Stop	Stop	scop	Stop	scop	arop	stop	stop	arop Gron	arop aron	STOP -	STOP -	Stop	Stop	Stop	Stop																				
C	C	0	0	0	0	0	0	0	0	0	0	0 0		5 0																			0 0	0	0	0	0	0	0	0	0	0	0	0 0							- c				> 0	0	0	0
C	c	0	0	0	0	0	0	0	0	0	0 0			 	 > c				 > c													> c		0	0	0	0	0	0	0	0	0	0 0	 D (D (> c		 > c	 > c				0	0	0
43	43	45	45	49	49	52	52	54	4	200	28	19		- C	5	0	00		10	1 - 1		0 0		14	r 0	201				82	2 4 8	0.00	87	87	68	68	91	91	95	95	97	1.5	רע סית	א ת י	F 0 F	104 101	101	OT L		011	011 011		115	116	116	116	116	117
11.5	11.5	11.0	11.0	10.5	10.5	10.5	10.5	10.0	10.01	<u>م.</u>	<u>س</u>	ע ע חיר		0.0	0.0	0.0	- u	0 0	0 u	0.0	0.0	0 0	0 0	0.0 0	20.0		1.1	7 5	7.5	7.5	0.7	7.01	10.7	7.0	7.0	7.0	6.5	6.5	6.0	6.0	5.0	0.0	0.0	0.0 1	0.0	. n . n	0.0	0.0	0.10		10.0	10.0		0.0	0.0	1.0	1.0	1.0
0.6	0.6	8.5	8.5	7.5	7.5	7.0	7.0	7.0	0.7	6.0	0.0 9	ດ ເ ດ	0 u 0	0.0	0 v	4 <	4 v	, , ,	4 v	7 T	⊃ u • †	0 u		0 C		9 C	0.2	0	2.0	2.0	 	1.5	1.0	1.0	1.0	1.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0 u	2.5 -) C 1 -		0.0	0.0-	-0.0-	1.0	1.0	1.0
5.0	5.0	5.0	5.0	5.0	5.0	10.0	10.0	5.0	5.0	10.0	10.0	0.01	0.01	0.01	0.01	0.01				0.01		10.01		10.01) ⊂ • ư	ר כי היני	0 0 0	20	0.0 0.0	5.0	0. 0.	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0 . 0 .	0 . 0 .	0.u	о с п и	0.u	. u					0.0	0.0	0.0	0.0	0.0	0.0	-0.0
11h54m24s	11h54m25s	11h54m26s	11h54m27s	11h54m28s	11h54m29s	11h54m30s	11h54m31s	11h54m32s	11h54m33s	11h54m34s	11h54m35s	111154m368	11154m3/S	11hr4m202	11464m402		11h54m42e	11hc4m425	1175400400	117540055	11h64m466	11h54m475	11h54m496	11h54m49s	11h54m50s	11h54m51s	11h54m52s	11h54m53s	11h54m54s	11h54m55s	11h54m56s	11h54m57s	11h54m58s	11h54m59s	11h55m00s	11h55m01s	11h55m02s	11h55m03s	11h55m04s	11h55m05s	11h55m06s	S/ OMCCULL	SSUMCCUTT	S60mccnlt	11hccm11c	STINCCUTT	11h55m120	11455m146	11h55m156	11455m16e	11h55m17e	11h55mlgs	11h55m19s	11h55m20s	11h55m21s	11h55m22s	11h55m23s	11h55m24s

11h55m25s	-0.0	1.0	1.0	117	0	0	Stop
11h55m26s	-0.0-	1.0	1.0	117	0	0	Stop
11h55m27s	-0.0-	1.0	1.0	117	0	0	Stop
11h55m28s	-0.0	0.5	1.5	117	0	0	Stop
11h55m29s	-0.0-	0.5	1.5	117	0	0	Stop

ນ 4 4 ທ ທ

183 183 183 175 175

555 655 71 71

с. <u>к</u>

2, 10.1 Eurning Circles : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Current Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence Start : t35 Stop Stop Stop stop stop stop stop stop (2.10) vitesse 13.5 noeuds stoppé sur 2.6 longeurs

: 2010-05-03 - 10h25m29s : t36

۰.

236	236	236	235	235	237	237	235	235	251	251	361	361	360	360	362	362	360	360	360	360	361	361	360	360	
66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	
316	316	316	316	316	316	316	317	317	0	0	با	1-1-	0 -	0-	0-	0-	0-	01	0 -	0-	191	191	287	287	
97	97	97	97	97	97	97	97	97	97	97	97	97	96	96	97	97	97	97	97	97	97	97	97	97	
Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
287	300	300	306	306	313	313	320	320	334	334	341	341	345	345	351	351	354	354	356	356	360	360	г	1	
4.0	3.0	3.0]	2.5	2.5	2.5	2.5	2.5	2.5	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	2.0	2.0	2.5	2.5	3.5	3.5	4.0	4.0	
-1.5	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-0.5	-0.5	1.0	1.0	1.5	1.5	2.5	2.5	3.5	3.5	4.0	4.0	
-5.0	-5.0	-5.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0-	0.0-	-0.0	-0.0	0.0-	0.0-	0.0-	-0.0	-0.0	-0.0-	-0.0	-0.0	-0.0	0.0-	0.0-	-0.0	
12h08m25s	12h08m26s	12h08m27s	12h08m28s	12h08m29s	12h08m30s	12h08m31s	12h08m32s	12h08m33s	12h08m34s	12h08m35s	12h08m36s	12h08m37s	12h08m38s	12h08m39s	12h08m40s	12h08m41s	12h08m42s	12h08m43s	12h08m44s	12h08m45s	12h08m46s	12h08m47s	12h08m48s	12h08m49s	

2, [0, 2 : Turning Cireleo : 1- No current Session: Name : trajecto j3p 3-05-10 crash stops Lake Path : Instructors: Jean-Paul JEANJEAN, Jean-Marie TROUSSELARD Sequence: Tracks : Normandie Sequence start : t33 Stop Stop Stop essai 26 (2.10 J) vitesse 13.5 noeuds

: 2010-05-03 - 10h25m29s : t34

	2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
916 316	
stop Stop	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	000000000000
00000	
	125 125 133 133 135 155 155 155 155 155 155 15
13.0 13.5 13.5 13.0 13.0 13.0	13.5 13.5 13.5 13.5 13.5 13.5 13.5
13.0 13.0 13.0 13.0 13.0 13.0 13.0	13.0 13.0 13.0 13.0 13.0 13.0
00000000000000000000000000000000000000	00000000000000000000000000000000000000
	318 318 358 358 358 358 358 358 358 358 358 35

233	235	235	233	233	235	235	235	235	234	234	233	233	236	236	
66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	
318	317	317	317	317	316	316	316	316	316	316	316	316	317	317	
97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	
Stop															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
126	132	132	138	138	152	152	159	159	166	166]	172	172	186	186	
3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	
-0.0	-0.0	-0.0	0.0	0.0	-0.5	-0.5	-0.0	-0.0	-0.5	-0.5	-0.0	-0.0	-0.0	-0.0	
5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
12h04m05s	12h04m06s	12h04m07s	12h04m08s	12h04m09s	12h04m10s	12h04m11s	12h04m12s	12h04m13s	12h04m14s	12h04m15s	12h04m16s	12h04m17s	12h04m18s	12h04m19s	

